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I. General introduction 

Acquiring and executing skills occurs regularly in everyday life. During the human 

lifespan, we learn several skills, especially at a young age. How we learn, consolidate, 

and retrieve such skills is highly relevant not only in typical development, but in atypical 

development as well. In my dissertation, I will focus on these questions and aim to provide 

a deeper understanding of skill learning, more precisely, of procedural memory, by 

investigating how the functional changes in fronto-striatal circuits in typical and atypical 

development might influence the learning and consolidation of procedural information. 

In the general introduction, at first, I will present the multiple memory system with 

a focus on procedural memory and describe in detail the different regularities within 

procedural memory. This will be followed by a methodological section describing 

different versions of the Alternating Serial Reaction Time (ASRT) task, which were used 

in the studies of the dissertation to measure procedural memory. In the second half of the 

general introduction, I will summarize past research on procedural memory in typically 

and atypically developing children and across the lifespan. At last, the research questions 

of the respective studies included in the dissertation will be presented. 

1. Multiple memory systems and phases of memory 

Memory is not a unified construct; considering long-term memory, multiple memory 

systems can be distinguished (Squire, 1994; Squire & Wixted, 2011). The traditional 

taxonomy differentiates between declarative and non-declarative memory systems 

(however, for an alternative approach, see Henke, 2010). Declarative memory underlies 

learning and remembering facts (semantic memory) and events (episodic memory), and 

the memory representations are consciously accessible, flexible and affects behavior in 

different contexts. Taken the neural background, declarative memory is mainly related to 

the medial temporal lobe, especially to the hippocampus (Squire & Wixted, 2011). Non-

declarative memory consists of several different memory types, such as priming, classical 

conditioning, emotional and perceptual learning, and procedural memory (Squire & 

Wixted, 2011). Procedural memory is involved in the acquisition of skills and habits 

(Frith & Frith, 2012; Kaufman et al., 2010; Ullman, 2004) and this memory system is the 

main focus of the dissertation. Non-declarative memory is traditionally defined as a 

system that lacks consciousness and lacks dependence on the medial temporal lobe 

(Reber, 1967). Memory systems can also be differentiated based on the consciousness of 
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the memory representations. Based on this approach, explicit and implicit memory 

systems can be distinguished (Graf & Schacter, 1985), where the former refers to 

consciously accessible memories and the latter refers to a system that lacks 

consciousness. These partly overlap with the declarative/non-declarative distinction: 

declarative memories are consciously accessible, that is, explicit, whereas non-declarative 

memories are implicit, that is, consciously inaccessible (Reber, 2013). These terms are 

therefore often used interchangeably.  

When investigating human memory, besides differentiating between the memory 

systems, we also have to take into consideration the different phases of memory. The first 

phase is learning or acquiring information, followed by consolidation. Through 

consolidation, the fragile and unstable encoded memory representations became more 

stable and less susceptible to future interferences, ensuring that the memory 

representations can be retrieved later (Walker, 2005). Here, we define successful 

consolidation in the following way: it can manifest either as retention, which refers to 

similar performance at the end of learning and during subsequent testing or as offline 

gains, which refers to better performance during testing than learning (termed offline 

learning, Robertson, Pascual-Leone, & Miall, 2004). The present dissertation investigates 

both learning and consolidation within procedural memory. 

2. Different regularities within procedural memory 

In my dissertation, I will focus on procedural memory. Procedural memory gives us 

the ability to detect and extract many types of regularities from the environment, enabling 

us to adapt to our surroundings. When humans are exposed to structured patterns, they 

can acquire the regularities underlying the structured pattern and it typically occurs 

incidentally (i.e., without the intention to learn) and without awareness (Batterink, Paller, 

& Reber, 2019; Conway, 2020; Siegelman, Bogaerts, Christiansen, & Frost, 2017). 

Procedural memory is a multifaceted system which supports several automatic functions, 

such as learning sequences or probabilistic categorization, and it also underlies the 

acquisition of numerous motor and cognitive skills (i.e., language) and is related to habits 

(Frith & Frith, 2012; Kaufman et al., 2010; Ullman, 2004). 

Humans are capable of extracting several different kinds of regularities. Prior studies 

have proposed that the regularities, that is, the input structure can vary in complexity and 

the different regularities can be placed along a continuum from quite simple, deterministic 
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ones to more complex, probabilistic ones (Conway, 2020). In relation to sequence 

learning – which is a function supported by procedural memory – Conway and 

Christiansen (2001) suggested three main types of sequences. The simplest ones are fixed 

sequences, where elements occur in the same deterministic, inflexible, and arbitrary 

order, such as stereotyped sequence of actions. In language, examples for fixed sequences 

are idioms and stock phrases, such as ‘once upon a time’. The second type is statistical-

based sequences, where certain pairs or triplets of elements frequently co-occur as defined 

by the transitional probabilities between the elements. In language, transitional 

probabilities are crucial in word segmentation (Saffran, Aslin, & Newport, 1996). The 

third, most complex type of sequences are hierarchical-based structures, where lower-

level units are combined into more complex units, just as words are combined into phrases 

and sentences in language. Relatedly, Dehaene, Meyniel, Wacongne, Wang, and Pallier 

(2015) proposed a taxonomy where they differentiated between five possible, distinct 

levels of abstraction when learning a sequence. Humans can learn the transitions from 

one item to the next and timing. Transitions can correspond to the statistical-based 

sequences in the taxonomy of Conway and Christiansen (2001). The second level, that is, 

chunking refers to the mechanisms where we group together recurring elements and store 

them as a single unit. The third level is ordinal knowledge, which is an ordered list where 

we have explicit knowledge of which element comes first, second and so on. This level 

can be related to fixed sequences in the taxonomy of Conway and Christiansen (2001). 

The fourth and five levels are algebraic patterns and nested tree structures. Moreover, in 

his review, Conway (2020) further detailed the types of regularities and proposed a rough 

taxonomy of input structures. The simplest ones are (1) repetitions, followed by (2) serial 

transitions and (3) chunks. More complex patterns would be (4) finite state grammars, (5) 

non-adjacent dependencies and (6) hierarchical structure at the top. All of these 

taxonomies point towards the same direction: the regularities humans can acquire might 

be placed along a spectrum based on their complexity (Conway, 2020). 

Most of the prior studies investigated only one regularity at a time. In my dissertation, 

I will focus on two kinds of regularities, namely statistical, probability-based regularities, 

and sequential, serial order-based, rule-based regularities and examine them 

simultaneously within one paradigm. In the present framework, statistical / probability-

based regularities refer to shorter-range relations between stimuli based primarily on 

probabilistic information. The probability-based information is typically learned 

relatively rapidly and in an incidental manner. The acquisition of serial order-based 
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regularities refers to the learning a series of repeating elements which occur in the same 

order, typically with embedded noise between them. Probability-based regularities would 

correspond to the statistical-based sequences in the taxonomy of Conway and 

Christiansen (2001) and to the transitions in the taxonomy of Dehaene et al. (2015), while 

serial order-based regularities would correspond to fixed sequences in the taxonomy of 

Conway and Christiansen (2001) and to ordinal knowledge in the taxonomy of Dehaene 

et al. (2015). 

In this section, I will present the empirical evidence supporting the distinction of 

probability-based and serial order-based regularities. Previous studies have shown that 

the acquisition of these regularities differs both on the behavioral and neural level. On the 

behavioral level, the learning of serial order-based regularities seems to follow a 

gradually increasing trajectory, whereas the acquisition of probability-based regularities 

seems to plateau early (Kóbor et al., 2018; Simor et al., 2019). The distinct learning 

trajectories of the two regularities were also reflected in event-related potentials (Kóbor 

et al., 2018). In detail, the N2 component reflected the acquisition of probability-based 

information already at the beginning of the task and it did not change with practice, thus, 

it showed the rapid, automatic detection of probability-based regularities. The acquisition 

of serial order-based information was mirrored by the N2 and P3 components, both 

gradually changed as the task progressed and learning took place. Relatedly, Takács et al. 

(2021) demonstrated that the two regularities seem to be associated with distinct aspects 

of information coded in the N2 time window. Moreover, Nemeth, Janacsek, and Fiser 

(2013) examined the developmental trajectory of the two regularities from the age of 11 

to 39 years and showed age-invariant trajectory regarding the acquisition of both 

probability-based and serial order-based regularities. Furthermore, Simor et al. (2019) 

found differences in neural oscillations during consolidation of the two regularities. 

Further improvements in the learning of serial order-based information were predicted by 

slow frequency oscillations (high delta and theta power) during sleep, whereas 

consolidation of probability-based regularities was not associated with spectral EEG 

power measures. Moreover, the two regularities also seem to have different functional 

connectivity patterns during consolidation (Zavecz, Janacsek, Simor, Cohen, & Nemeth, 

2020). To sum up, converging evidence show differences both in the acquisition and 

consolidation of probability-based and serial order-based regularities. 
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3. Measuring regularities within procedural memory with different versions of the 

Alternating Serial Reaction Time task 

To measure the different kinds of regularities within procedural memory, we 

employed two versions of Alternating Serial Reaction Time (ASRT) task (Howard, & 

Howard, 1997; Nemeth, Janacsek, & Fiser, 2013) in all studies. The ASRT task is a visuo-

motor four-choice reaction time task. Participants see four horizontal, equally spaced 

circle on the screen. In one of the circles, a stimulus appears, and participants have to 

press the corresponding button as fast and as accurately as possible. The task is bimanual, 

participants use the index and middle finger of both hands. 

The appearance of the stimuli follows an 8-element alternating sequence, where 

pattern and random elements alternate with each other (e.g., 1-r-2-r-4-r-3-r, where 

numbers represent the locations from left to right and ‘r’ indicates a randomly selected 

location out of the four possible ones). Due to the alternating sequence, some runs of three 

consecutive trials (termed triplets in the present studies) occur with a higher probability 

(or frequency) than others (for details on how probability/frequency differs between 

triplets, see the task description in the studies). In the present studies, we used the terms 

frequency and probability interchangeably as joint probability (how frequently a 

particular triplet occurs) and conditional probability (how predictable the last element of 

the triplet is) are identical in the ASRT task in relation to triplets (Szegedi-Hallgató, 

Janacsek, & Nemeth, 2019). Each trial is categorized as the last element of a triplet in a 

moving window manner, that is, a given trial is defined as the first element of a given 

triplet, as the second element of the next triplet and as the last element of the following 

triplet.  

Participants show faster reaction times and higher accuracy to high-probability 

triplets compared to low-probability ones (e.g., Howard, & Howard, 1997; Nemeth, 

Janacsek, & Fiser, 2013; Song, Howard, & Howard, 2007a, 2007b). Importantly, 

however, comparing the triplets based only on probability in the original ASRT task has 

a confound: it does not take into account whether the last trial of the triplet is a pattern or 

random trial, meaning that it does not take into account the serial-order information 

(Nemeth, Janacsek, & Fiser, 2013). Hence, probability-based and serial order-based 

regularities are intermixed in the original ASRT task. As mentioned, besides probability, 

we can differentiate between the triplets based on their structure, that is, whether they are 

pattern or random trials (Nemeth, Janacsek, & Fiser, 2013). High-probability triplets can 
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be separated into pattern-ending high-probability triplets and random-ending high-

probability triplets. The third element of a low-probability triplet can only be random as 

pattern elements always occur with high probability. To sum up, we can differentiate 

between three trial types: (1) pattern trials belong to the predetermined sequence and are 

the last element of a high-probability triplet, (2) random high trials appear randomly and 

are the last element of a high-probability triplet, and (3) random low trials also appear 

randomly but are the last element of a low-probability triplet. 

In the original ASRT task, performance is measured by comparing accuracy scores 

and reaction times on high-probability (both pattern and random high trials) and low-

probability triplets (random low trials). Over the years, the previous studies used different 

terms to the performance measured by the original ASRT task: probabilistic sequence 

learning and statistical learning are the most common ones (e.g., Kóbor, Janacsek, 

Takács, & Nemeth, 2017; Takács et al., 2018). Here, we employ the original ASRT task 

in Study 4, where we refer to the measured learning performance as statistical learning, 

highlighting that the main difference between the compared trials is their probability. 

To disentangle statistical / probability-based and serial order-based regularities, we 

also used a modified version of the task, named cued ASRT task (or explicit ASRT task 

in some studies, Nemeth, Janacsek, & Fiser, 2013). The underlying structure (i.e., the 

alternating sequence) is identical in the original and cued ASRT tasks. However, in the 

cued ASRT task, pattern and random elements are marked by different visual stimuli: 

pattern elements are indicated by a dog’s head and random elements are denoted by a 

penguin. Participants are informed about the presence of the alternating sequence and 

about the fact that the occurrence of the dogs follow a predetermined pattern, and the 

penguins appear in a random location. They are not informed about the exact sequence or 

the length of the sequence, but they are instructed to discover the pattern of the dogs’ 

appearance to improve their performance. These modifications enable us to measure the 

acquisition of probability-based and serial order-based regularities in parallel, within one 

learning session.  

In the cued ASRT task, the acquisition of probability-based regularities is measured 

by the difference in accuracy scores or reaction times between random high and random 

low trials. These trials share the sequence (serial-order) properties as they both random 

trials, but they differ in probabilistic (statistical) properties, as random high trials are part 

of a high-probability triplet and random low trials are part of a low-probability triplet. 

The acquisition of serial order-based regularities is measured by the difference in 
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accuracy scores or reaction times between pattern and random high trials. These trials are 

both high-probability trials, hence, they share the same probabilistic (statistical) 

properties, however, they differ in sequence (serial-order) properties as pattern trials are 

part of the predetermined sequence while the others appear randomly (Nemeth, Janacsek, 

& Fiser, 2013). In our previous studies (e.g., Kóbor et al., 2018; Nemeth, Janacsek, & 

Fiser, 2013; Simor et al., 2019) and in Study 1 and 3, we also refer to these learning 

processes as statistical and sequence learning, respectively. 

Importantly, these two regularities can be distinguished even in the original, non-

cued version of the ASRT task, if participants are exposed to enough learning sessions. 

Howard and Howard (1997) found that young adults show better performance on pattern 

trials compared to random high-probability trials after extensive learning (after a 4-day 

learning with 21 80-trial blocks in each day). Similarly, Howard, Howard, Japikse, 

DiYanni, et al. (2004) showed that young adult participants separated pattern trials from 

random high-probability trials after excessive training (after a 9-day learning with 21 80-

trial blocks in each day). These studies used the original ASRT task, where both pattern 

and random elements are marked with the same visual stimuli. Prior studies showed that 

a cued, instructed version of the task (i.e., where pattern and random stimuli are marked 

with different visual stimuli and participants are instructed to find the sequence) results 

in relatively faster acquisition of the alternating sequence (i.e., within one learning 

session; e.g., Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019). 

Therefore, acquisition of serial order-based regularities (i.e., differentiating between 

pattern and random high trials) can happen both in incidental learning condition (original, 

non-cued ASRT task, Howard, Howard, Japikse, DiYanni, et al., 2004; Howard, & 

Howard, 1997) and intentional learning condition (cued ASRT task, Kóbor et al., 2018; 

Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019). Intentional learning condition 

typically leads to faster learning of serial order-based regularities than incidental learning 

condition. 

Besides the regularities, other learning processes can also be present in the ASRT 

task. One such learning process is called general skill learning, which means that as a 

result of practice, participants process and respond faster to stimuli, and show improved 

visuomotor coordination, independent of the regularities embedded in the visual stimulus 

stream (Hallgato, Győri-Dani, Pekár, Janacsek, & Nemeth, 2013; Juhasz, Nemeth, & 

Janacsek, 2019). Out of the four studies, we examined general skill learning only in Study 
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4, where we describe the lifespan trajectory of the consolidation of statistical as well as 

general skill knowledge. 

In three studies out of the four presented in the dissertation, we employed the cued 

ASRT task to investigate the acquisition and consolidation of both probability-based and 

serial order-based regularities. In the published studies, we used different names when 

describing these regularities. Statistical regularities have been referred to as probability-

based regularities as well as statistical learning, whereas serial order-based regularities 

have been referred to as sequential regularities and as sequence learning. In the general 

introduction, we consistently use the terms probability-based and serial order-based 

regularities. In Study 4, we used the original ASRT task to investigate the consolidation 

of statistical regularities and general skill knowledge. We decided to refer to the former 

learning performance as statistical learning to highlight that the main difference between 

the compared trials in the original ASRT task is their probability. Furthermore, a prior 

study has shown that both the acquisition and consolidation of statistical regularities are 

comparable in the original and cued ASRT task (Horvath, Torok, Pesthy, Nemeth, & 

Janacsek, 2020). Participants who were exposed to the statistical regularities using the 

original ASRT task showed comparable performance to those who were exposed to 

identical regularities using the cued ASRT task. Nevertheless, statistical regularities in 

the original and cued ASRT task differ on the operational level as in the original task, 

serial-order information is intermixed with the statistical information. Based on this and 

for an easier understanding, we decided to use different terms for statistical, probability-

based regularities in the original and cued ASRT tasks. When referring to the regularity 

in the original ASRT task, we use the term statistical regularity, and in case of the cued 

ASRT task, we use the term probability-based regularity. For further details of the 

characteristics of the ASRT tasks, see the task descriptions in the respective studies. 

4. Procedural memory in Tourette Syndrome 

Investigating procedural memory is highly relevant both in typical and atypical 

development. Considering the latter, in my dissertation, I will focus on a childhood-onset 

neurodevelopmental disorder, namely Tourette Syndrome (TS, or Tourette disorder). 

According to DSM-V, the diagnosis requires several motor tics and at least one vocal tic 

to be present for at least a one-year period with an onset before the age of 18, and tics 

cannot be accounted for other medical conditions or medication (APA, 2013). Tics are 
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recurrent, abrupt, semi-voluntary movements or vocalizations, which are typically mimic 

some fragment of normal behavior, but they are misplaced in context and time. Simple 

and complex tics are distinguished: the former ones seem like purposeless movements or 

vocalizations and involve only a few muscles, such as blinking, shrugging, coughing or 

throat clearing. Complex tics can appear as more purposeful, goal-directed movements or 

sounds, they are more coordinated, such as spinning, hopping, or repeating sounds made 

by oneself (palilalia) or by others (echolalia). Boys are more frequently affected than girls 

(3:1 ratio) and the prevalence rate is around 1% (Robertson, 2015). Typically, the first 

tics appear around the age of 4-6 years, the highest severity is around the age of 12 years, 

followed by a substantial decline during adolescence. Around 20% of the patients 

continue ticcing during adulthood as well (Bloch & Leckman, 2009; Robertson et al., 

2017). Tics change over time with some tics disappearing and new tics appearing, and 

they also show considerable fluctuations in frequency and distribution and typically wax 

and wane in severity. 

As of right now, there is no generally accepted theoretical model describing the 

development of tics. Prior studies suggested, however, a potential link between tics and 

habits (Conceição, Dias, Farinha, & Maia, 2017; Goodman, Marsh, Peterson, & Packard, 

2014; Maia & Conceição, 2017). In detail, tics resemble habits, and evidence for this link 

can be found both on the behavioral and neural levels. On the behavioral level, both tics 

and habits are automatically executed, inflexible responses to stimuli that are hard to 

inhibit. Considering the neural level, TS is characterized by structural and functional 

alterations in the basal ganglia, in the related frontal regions and in the cortico-basal 

ganglia-thalamo-cortical (CBGTC) circuits. Tic-related activation has been found in the 

premotor cortex, sensorimotor cortex, supplementary motor area, putamen, globus 

pallidus and thalamus (Bohlhalter et al., 2006; Stern et al., 2000; Wang et al., 2011; 

Worbe et al., 2015). Moreover, motor tic severity was positively correlated with 

activation within the anterior mid-cingulate cortex and posterior cingulate cortex 

(Jackson, Sigurdsson, Dyke, Condon, & Jackson, 2021). Increased volume of the 

putamen (Roessner et al., 2011) and decreased volume of the caudate nucleus (Peterson 

et al., 1998; Peterson et al., 2003) has also been shown in TS; and the structural 

connectivity within the motor loop and resting-state functional connectivity in the motor 

networks are also increased in TS (Worbe et al., 2012; Worbe et al., 2015). TS also 

involves striatal dopaminergic hyperinnervation (e.g., Buse, Schoenefeld, Münchau, & 

Roessner, 2013; Singer, 2013) and Maia and Conceição (2017) proposed that tics are 
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maladaptive motor habits reinforced by increased phasic dopamine responses, while tonic 

dopamine responses promote the execution of the learned tics. Besides being altered in 

TS, these brain areas are functionally related to the formation of skills and habits in the 

procedural memory as well. Indeed, procedural memory has been linked to the basal 

ganglia and CBGTC circuits (Doyon et al., 2009; Janacsek et al., 2020; Poldrack & 

Packard, 2003). To sum up, tics and habit are similar on the behavioral level and are 

related to similar neural networks. These shared similarities make the investigation of 

procedural memory in TS highly relevant. 

In Study 1 and 2, I will focus on the possible alteration of procedural memory in TS. 

Prior studies proposed that the neural alterations in TS lead to a hyperfunctioning of the 

cognitive functions related to the altered brain regions (Clinical Extension Hypothesis, 

Dye, Walenski, Mostofsky, & Ullman, 2016). As detailed above, one cognitive function 

which shares a neural overlap with the neural background of TS is procedural memory. 

Previous studies have already suggested that enhanced procedural functions, that is, 

procedural hyperfunctioning can be present in the disorder (Dye et al., 2016; Shephard, 

Groom, & Jackson, 2019; Takács et al., 2018; Walenski, Mostofsky, & Ullman, 2007). 

In Study 1, we investigated the acquisition of procedural information, especially focusing 

on which regularities (probability-based or serial order-based) related to procedural 

memory might be altered in TS. In Study 2, instead of learning, we examined the 

consolidation of probability-based and serial order-based regularities, following both 

short-term and long-term offline delays. Altogether, these two studies will provide 

information about how the functional changes in fronto-striatal circuits in atypical 

development influence procedural memory. As these circuits are related to both 

procedural learning and consolidation (Doyon et al., 2009), we can expect changes in 

both phases. 

5. Procedural memory in typical development 

The fronto-striatal circuits as well as the hippocampus undergo a protracted 

development, therefore, investigating how procedural memory develops is a crucial 

question not only in atypically developing disorders where these brain areas are involved, 

but in typical development as well. The developmental trajectory of procedural learning 

has been described with three different models (for a review, see Zwart, Vissers, Kessels, 

& Maes, 2019), whereas, to the best of our knowledge, no theoretical model has been 
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proposed for the developmental trajectory of procedural memory consolidation. In the 

next section, I will present the models describing the lifespan trajectory of procedural 

learning and shed light on the need for examining procedural memory consolidation 

across the lifespan. 

The first model for the lifespan trajectory of procedural learning proposed age 

invariance (Reber, 1993) and was based on studies finding similar performance in 

children and adults (e.g., Meulemans, Van der Linden, & Perruchet, 1998) and studies 

showing that procedural learning is related to the striatum, which matures early in life 

(Reber, 1993). This model suggests that no developmental change occurs from childhood 

to adulthood. In contrast, the other two models propose age variance in procedural 

learning. The inverted U-shaped model describes the following trajectory: procedural 

learning undergoes a gradual improvement during childhood and adolescence, peak 

performance is present in young adulthood and a decline emerges with aging (Lukács & 

Kemény, 2015). A study comparing learning from the age of 7 to 87 years and showing 

better performance in young adulthood compared to childhood and old adulthood 

supports this model (e.g., Lukács & Kemény, 2015). The other age-variant model, which 

can be referred to as the ‘competition model’ proposes a different trajectory: better 

procedural learning in childhood (under the age of 12) is followed by less effective 

learning later in life (Janacsek, Fiser, & Nemeth, 2012). This model is supported by 

empirical studies employing a lifespan approach and showing better learning under the 

age of 12 (Janacsek et al., 2012; Juhasz et al., 2019; Nemeth, Janacsek, & Fiser, 2013). 

Out of the three competing models, the age-variant models are strongly supported by 

empirical findings, however, the exact trajectory is not full apparent yet. The 

contradictory results of the two age-variant models might be due to the methodological 

differences between them (Zwart et al., 2019). 

Considering the developmental curves for procedural learning, different trajectories 

can be proposed for the consolidation of procedural knowledge. The age-variant 

trajectories for procedural learning raises the question whether the consolidation of such 

knowledge might follow an age-variant curve as well. However, this is not necessarily 

the case. In atypical development, a dissociation between learning and consolidation has 

been demonstrated: one study showed enhanced learning and intact consolidation in 

Tourette syndrome (Takács et al., 2018), while in another study, intact learning was 

followed by impaired consolidation in developmental dyslexia (Hedenius, Lum, & Bölte, 

2021). Nevertheless, it is still an open question whether this dissociation can be found in 
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neurotypical population as well. Hence, in Study 3 and 4, we concentrated on the 

consolidation of procedural knowledge. In more detail, Study 3 investigated the long-

term, that is, one-year consolidation of probability-based and serial order-based 

regularities in childhood and adolescence. In Study 4, we aimed to examine the lifespan 

trajectory of statistical and general skill knowledge involving participants from the age 

of 7 to 76 years in a cross-sectional design.  

6. Research questions 

6.1. Is the learning of probability-based and serial order-based regularities enhanced in 

Tourette syndrome? 

As detailed above, examining procedural memory in TS is highly relevant due to 

the behavioral and neural overlap between this memory system and tics. Based on the 

prior empirical studies, the picture is a bit mixed: studies mostly showed enhanced (Dye 

et al., 2016; Shephard et al., 2019; Takács et al., 2018; Walenski et al., 2007) or at least 

intact (Channon, Pratt, & Robertson, 2003; Takács et al., 2017) procedural memory 

performance in the disorder, but impaired performance has also been suggested (Keri, 

Szlobodnyik, Benedek, Janka, & Gadoros, 2002; Marsh et al., 2004). In Study 1, we 

investigated how two regularities within the procedural memory system, namely 

probability-based and serial order-based regularities are affected in TS and whether these 

regularities contribute to the possible procedural hyperfunctioning suggested by prior 

studies (Dye et al., 2016; Shephard et al., 2019; Takács et al., 2018; Walenski et al., 2007). 

 

6.2. Is the consolidation of probability-based and serial order-based regularities robust 

in Tourette syndrome? 

In Study 2, we focused on the consolidation of procedural knowledge in TS which 

has not received much attention so far. Takács et al. (2018) used the original ASRT task 

and employed a 16-hour offline delay in their study design. Their results showed 

enhanced learning in the disorder, however, strong conclusions could not be drawn 

regarding consolidation. The TS group showed greater forgetting than the typically 

developing control groups, but this could be explained by the learning differences at the 

end of the learning phase. When they compared the overnight changes as a function of 

prior knowledge – meaning that they controlled for the learning differences – the groups 

showed similar retention performance. Consolidation of procedural knowledge has also 
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been examined indirectly in TS by investigating the access to previously consolidated 

procedural knowledge using language-based tasks. Both studies (Dye et al., 2016; 

Walenski et al., 2007) showed evidence for faster access, which falls in line with the 

notion of procedural hyperfunctioning in TS. Here, we examined both the short-term 

(five-hour) and long-term (one-year) consolidation of probability-based and serial order-

based regularities in TS. Employing a one-year offline period enables us to bring closer 

the time scale of lab studies, which typically last only for hours or days and of real-world 

observations, that is, the time scale of learning a new skill or develop a habit in everyday 

life. 

 

6.3. Is the one-year consolidation of probability-based and serial order-based 

regularities successful in typically developing children and adolescents? 

In Study 3, we recruited participants between the ages of 9 and 15 years and 

focused especially on the long-term, that is, one-year consolidation of procedural 

knowledge. Procedural memory performance over short periods of time, that is, from 

minutes to weeks has been investigated across the lifespan. Long-term memory 

performance, that is, from months to years, received relatively less attention and has not 

been assessed in children and adolescents yet. In neurotypical adults, both Romano, 

Howard, and Howard (2010) and Kóbor et al. (2017) showed robust representation of 

statistical knowledge after a one-year offline delay. Several studies showed retained 

knowledge in typically developing children following various offline delays (from 11-

hour to one week, e.g., Fischer, Wilhelm, & Born, 2007; Hedenius et al., 2021; Hedenius 

et al., 2013; Hedenius et al., 2011; Nemeth, Janacsek, Balogh, et al., 2010; Takács et al., 

2018), but no studies tested consolidation by employing a longer offline period. As 

mentioned in the previous section, the possible dissociation of learning and consolidation 

of procedural knowledge raises the question whether, similarly to age-variant learning, 

consolidation of procedural knowledge might also be age-variant. Hence, in Study 3, we 

investigated the long-term, that is, one-year consolidation of probability-based as well as 

serial order-based knowledge in a sample of 9-15-year-olds. 
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6.4. Does the consolidation of procedural knowledge follow an age-variant trajectory 

across the lifespan? 

In Study 4, we aimed to unveil the lifespan differences in the consolidation of 

procedural knowledge by employing the same experimental design in a large sample of 

participants between the ages of 7 and 76 years. Here, we examined both statistical and 

general skill knowledge. Regarding both types of knowledge, prior studies mostly 

focused on one age group at a time or contrasted only a few age groups. Most studies 

have suggested successful retention of statistical knowledge in children and adolescents 

(e.g., Hedenius et al., 2021; Hedenius et al., 2013; Hedenius et al., 2011; Nemeth, 

Janacsek, Balogh, et al., 2010; Takács et al., 2018), and in young and middle-aged adults 

(e.g., Arciuli & Simpson, 2012; Horvath et al., 2020; Kim, Seitz, Feenstra, & Shams, 

2009; Kóbor et al., 2017; Meier & Cock, 2014; Nemeth, Janacsek, Király, et al., 2013; 

Romano et al., 2010; Simor et al., 2019; Song et al., 2007b), but studies involving older 

adults have shown mixed results: some have found intact retention (Romano et al., 2010), 

and others have suggested a decline (Nemeth & Janacsek, 2011).  

As for the consolidation of general skill knowledge, offline improvement (i.e., 

better performance in the testing phase compared to the end of the learning phase) has 

been found in children and adults (Csábi, Benedek, Janacsek, Katona, & Nemeth, 2013; 

Csabi et al., 2015; Hedenius et al., 2021; Hedenius et al., 2013; Nemeth, Janacsek, 

Balogh, et al., 2010; Nemeth, Janacsek, Király, et al., 2013). However, we have no 

information about whether the magnitude of offline improvement differs between 

children and adults. In older adults, once again, the picture is not clear: some studies have 

found offline improvement in older adults, although the gain was smaller compared to the 

gain in young adults (Nemeth, Janacsek, Londe, et al., 2010), while other studies could 

not detect offline learning in older adults (Nemeth & Janacsek, 2011). Based on these 

empirical findings, no strong conclusions can be drawn either for statistical or general 

skill knowledge. For statistical knowledge, retention in all age groups seems to be the 

most plausible outcome, which would support an age-invariant model of the consolidation 

of statistical knowledge. For general skill knowledge, offline improvement could be 

expected in most age groups, the extent of improvement could differ. 

 

To sum up, the aim of the studies in the dissertation is to investigate how the 

changes in fronto-striatal networks might lead to changes in procedural memory and to 

provide a deeper understanding of this memory system both in typical and atypical 
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development. In typical development, the aim is to shed light on the developmental 

trajectory of procedural memory consolidation over various offline delays. In atypical 

development, our aim is to reveal which processes within the procedural memory system 

are altered in a fronto-striatal disorder, namely in Tourette syndrome. Exploring the 

impairments and strengths in a disorder could serve as a basis for developing new training 

approaches which may help reduce some disadvantages associated with the disorder. The 

main characteristics and questions of the four studies are summarized in Table 1.1. 

 

Table 1.1. Summary of the studies presented in the dissertation. 

 

Population 
Measured 

processes 
Task Main question 

Study 1 

children and 

adolescents with 

TS and matched 

TD controls 

acquisition of 

probability-

based and serial-

order based 

regularities 

cued 

ASRT 

task 

Is the learning of probability-

based and serial order-based 

regularities enhanced in 

Tourette syndrome? 

Study 2 

children and 

adolescents with 

TS and matched 

TD controls 

consolidation of 

probability-

based and serial 

order-based 

regularities 

cued 

ASRT 

task 

Is the short- and long-term 

consolidation of probability-

based and serial-order 

regularities robust in Tourette 

syndrome? 

Study 3 
TD children and 

adolescents 

consolidation of 

probability-

based and serial 

order-based 

regularities 

cued 

ASRT 

task 

Can children and adolescents 

successfully retain 

probability-based and serial-

order regularities over a one-

year delay? 

Study 4 

TD children and 

adolescents, 

neurotypical 

young, middle-

aged, and old 

adults 

consolidation of 

statistical and 

general skill 

knowledge 

original 

ASRT 

task 

Are the lifespan trajectories 

of statistical and general skill 

knowledge age-variant? 

Note. TS = Tourette syndrome, TD = typically developing, ASRT task = Alternating Serial 

Reaction Time task. 
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II. Study 1: Dissociation between two aspects of procedural learning in 

Tourette syndrome: Enhanced statistical and impaired sequence 

learning 

Publication:  

Tóth-Fáber, E., Tárnok, Z., Janacsek, K., Kóbor, A., Nagy, P., Farkas, B. C., Oláh, Sz., 

Merkl, D., Hegedűs, O., Nemeth, D., & Takács, Á. (2021). Dissociation between two 

aspects of procedural learning in Tourette syndrome: Enhanced statistical and impaired 

sequence learning. Child Neuropsychology, 27(6) 799-821. 

https://doi.org/10.1080/09297049.2021.1894110 

Abstract 

Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder that primarily 

affects the cortico-basal ganglia-thalamo-cortical (CBGTC) circuitry and is characterized 

by motor and vocal tics. Previous studies have found enhancement in procedural memory, 

which depends on the CBGTC circuitry and plays an important role in the learning and 

processing of numerous motor, social, and cognitive skills and habits. Based on these 

studies, procedural hyperfunctioning in TS has been proposed. However, the 

neurocognitive mechanism underlying such hyperfunctioning is poorly understood. Here, 

we investigated how two aspects of procedural learning, namely 1) frequency-based 

statistical learning and 2) order-based sequence learning, are affected in TS. Twenty-one 

children with TS between the ages of ten and fifteen as well as 21 typically developing 

controls were tested on a probabilistic sequence learning task that enables the parallel 

assessment of these two aspects. We found that children with TS showed enhanced 

sensitivity to statistical information but impaired sequence learning compared to typically 

developing children. The deconstruction of procedural memory suggests that procedural 

hyperfunctioning in TS may be supported by enhanced sensitivity to statistical 

information. These results can provide a potential path for improving therapy methods 

and skill-oriented educational programs for TS. 

 

Keywords: Tourette syndrome, sub-cortical structures, procedural memory, skill 

learning, basal ganglia, statistical learning  

https://doi.org/10.1080/09297049.2021.1894110


21 
 

1. Introduction 

Tourette syndrome (TS) or Tourette Disorder is a neurodevelopmental disorder 

characterized by several motor and at least one vocal tic for at least a one-year period, 

which cannot be accounted for other medical conditions or medications (APA, 2013). TS 

can be marked by altered cognitive functions, including both impairments and 

enhancements (e.g., Delorme et al., 2016; Jung, Jackson, Nam, Hollis, & Jackson, 2015; 

S. C. Mueller, Jackson, Ranu, Sophia, & Hollis, 2006; Palminteri et al., 2011; Takács et 

al., 2018; Yaniv et al., 2017, although comorbidities could have confounded some of the 

prior results see Morand-Beaulieu et al., 2017). One of the areas where such enhancement 

has been found is procedural learning (and also accessing the already established 

procedural information), which underlies the learning of motor and cognitive skills 

(Delorme et al., 2016; Dye et al., 2016; Palminteri et al., 2011; Takács et al., 2018; 

Walenski et al., 2007). Based on these studies, it has been proposed that procedural 

hyperfunctioning exists in TS. The overlap between the neurobiological characteristics of 

TS and the neurophysiological underpinnings of procedural memory provides an 

opportunity to examine (1) the aspects of procedural functions and (2) the cognitive 

models of TS (Dye et al., 2016; Shephard et al., 2019) at the same time. Here we aimed 

to examine how two aspects of procedural learning, namely statistical and sequence 

learning, are affected in TS and test whether these aspects contribute to the procedural 

hyperfunctioning proposed by previous studies. 

The cognitive profile of TS has been thoroughly investigated, including executive 

functions (Channon et al., 2009; Yaniv et al., 2017), social cognition (Eddy & Cavanna, 

2013), and procedural memory (Channon et al., 2003; Marsh et al., 2004). Results on the 

cognitive profile could be confounded by certain factors such as comorbidities (for a 

review, see Morand-Beaulieu et al., 2017). A crucial aspect of cognition is procedural 

memory, which contributes to the acquisition, storage, and use of implicit motor and 

automatic cognitive behaviors such as skills and habits (Kaufman et al., 2010; Ullman, 

2004). Procedural memory is mediated mainly by the basal ganglia, particularly the 

striatum, and relies on the cortico-basal ganglia-thalamo-cortical (CBGTC) pathways 

(Doyon et al., 2009; Janacsek et al., 2020; Poldrack & Packard, 2003). The basal ganglia 

are thought to contribute to the acquisition of skills and habits, whereas neocortical 

regions might be more important for processing skills after they have been automatized 

(Ullman, 2016). In TS, tics and habits are phenomenologically similar and share neural 
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underpinnings (Conceição et al., 2017). It has been suggested that alterations in the 

frontostriatal regions and improper procedural learning mechanisms can explain the 

hyperkinetic profile of TS (Albin & Mink, 2006). 

The exact brain mechanisms underlying TS are not yet fully understood. However, 

converging evidence suggests both structural and functional abnormalities in the basal 

ganglia, related frontal regions, and in the CBGTC pathways (Albin et al., 2003; Albin & 

Mink, 2006; Maia & Frank, 2011; Mink, 2001; Peterson et al., 1998; Peterson et al., 2003; 

Stern et al., 2000). Tics may reflect abnormal habit-learning mechanisms, where improper 

stimulus-response associations are learned (Albin & Mink, 2006; J. Goodman et al., 2014; 

Petruo et al., 2019). Abnormalities in the CBGTC loop support the hypothesis of altered 

habit-learning in TS. Tics may result from a heightened direct pathway activity relative 

to indirect pathway activity in the CBGTC loop (Maia & Frank, 2011; Mink, 2001). 

These neurobiological alterations may lead not only to tics but also to 

enhancements in procedural learning (Dye et al., 2016; Walenski et al., 2007). Most of 

the previous studies examining procedural learning in TS reported enhanced functions 

(Delorme et al., 2016; Dye et al., 2016; Palminteri et al., 2011; Shephard et al., 2019; 

Takács et al., 2018; Walenski et al., 2007), or at least intact functions (Channon et al., 

2003; Takács et al., 2017), with only two reporting impaired performance (Keri et al., 

2002; Marsh et al., 2004). The reason for the differences among these studies are not yet 

clear. The reason for the different results among these studies is not yet clear. Some prior 

studies involved only a handful of TS participants, which could have led to low statistical 

power failing to find group differences. Previous studies also diverse in terms of age 

(child or adult TS samples) and in terms of tic severity; both might be differently related 

to procedural learning. Relatedly, the presence of comorbidities could also confound the 

results. Another possibility is that previous studies tapped into different aspects of 

procedural memory and these aspects are differentially affected by TS. In the present 

study, we focused on this and investigated two aspects of procedural learning in TS. 

Previous studies showing intact or enhanced procedural learning measured either 

sequence learning or language performance. One of the first studies using a sequence 

learning task to measure procedural memory in TS found no group differences between 

the TS and control groups (Channon et al., 2003). Similarly, Takács et al. (2017) reported 

comparable learning performance between children with TS and typically developing 

peers using the Alternating Serial Reaction Time (ASRT) task. Shephard et al. (2019) 

examined sequence learning using the Serial Reaction Time (SRT) task in children with 
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TS. Participants were assessed on two types of blocks: (1) sequence blocks containing 

stimuli following a predetermined sequence and (2) non-sequence blocks with random 

stimuli. Children with TS showed difficulties transitioning from sequence to non-

sequence blocks, they showed greater disruption in accuracy compared to the control 

group. This result can imply that children with TS overlearned the sequence in the task, 

which led to a more difficult transition. That is, children with TS showed procedural 

hyperfunctioning. In support of this, Takács et al. (2018) reported evidence of enhanced 

procedural learning in TS using the ASRT task. Children with TS made more prediction 

errors through learning than their typically developing peers, indicating enhanced 

sensitivity to the underlying regularities of the task. Moreover, procedural memory 

performance in TS had an early peak, and typically developing (TD) children did not 

exceed the level of TS performance throughout the task. The notion of procedural 

hyperfunctioning is further supported by studies with adult TS population, as well 

(Delorme et al., 2016; Palminteri et al., 2011). Palminteri et al. (2011) found that adults 

with TS showed enhanced reinforcement learning in a motor learning task. Furthermore, 

Delorme et al. (2016) found a higher rate of response to previously learned but devalued 

stimulus-response-outcome associations, which also suggest enhanced procedural 

functions. 

Similar to the sequence learning results, procedural hyperfunctioning has also 

been found in language-based tasks. Two studies (Dye et al., 2016; Walenski et al., 2007) 

showed faster grammatical processes in TS on the morphological and phonological levels. 

Walenski et al. (2007) was the first study to demonstrate enhanced procedural functions 

in TS. In this study, children with TS showed faster producing of rule-governed past 

tenses compared to their typically developing peers (e.g., slip-slipped) while showing 

similar performance on producing irregular past tenses (e.g., bring-brought). Moreover, 

the naming of manipulated objects (e.g., hammer) was also “speeded” in TS, while 

naming of non-manipulated objects (e.g., elephant) was similar in the TS and control 

groups. These results support the procedural hyperfunctioning hypothesis in TS. Whereas 

producing regular past tenses and naming manipulated objects both rely on procedural 

memory, producing irregular past tenses and naming non-manipulated objects appear to 

be stored in declarative memory (Ullman, 2004). Another language-related study (Dye et 

al., 2016) further strengthens procedural hyperfunctioning in TS. This study showed 

“speeded” grammatical composition on a non-word repetition task in TS. Children with 

TS repeated non-words (e.g., “naichovabe”) faster than typically developing peers, while 
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in accuracy there was no difference between the groups. This type of phonological 

manipulation taps into decomposition, a procedural aspect of the language domain.  

Procedural memory is a complex system and it supports several functions, such as 

learning sequences, probabilistic classification, and aspects of language, including 

grammar (Fiser & Aslin, 2001; Howard, & Howard, 1997; Knowlton, Squire, & Gluck, 

1994; Ullman, Earle, Walenski, & Janacsek, 2020). Converging evidence suggests 

procedural hyperfunctioning in TS in both the acquisition of procedural information (such 

as in sequence learning; Delorme et al., 2016; Palminteri et al., 2011; Takács et al., 2018) 

and the accessing of the already established procedures (such as in grammatical 

processing; Dye et al., 2016; Walenski et al., 2007). Importantly, acquiring procedural 

information is a complex function relying on multiple, parallel learning processes 

(Maheu, Dehaene, & Meyniel, 2019; Maheu, Meyniel, & Dehaene, 2020; Siegelman et 

al., 2017; Thiessen, Kronstein, & Hufnagle, 2013). It is not yet clear which aspect of 

procedural learning supports the potential hyperfunctioning in TS. 

Based on the previous studies, it is still unclear which aspects of procedural 

learning are affected in TS. Dye et al. (2016) suggest the importance of processing 

sequential information. Children and adults with TS may have enhanced sequence 

sensitivity, which leads to enhanced sequence learning and grammatical processing. 

Another significant aspect of procedural learning is processing of probabilistic 

information. The results of Takács et al. (2018), where children with TS showed enhanced 

learning on a probabilistic sequence learning task, suggest that enhanced sensitivity to 

probabilistic information may contribute to procedural hyperfunctioning. However, 

neither of these studies focused on contrasting these two aspects of procedural learning. 

Here, we designed a study to investigate how sensitivity to sequential vs. probabilistic 

information is affected in TS.  

Crucially, the sensitivity to sequential information and to probabilistic 

information cannot be measured at the same time with most tasks. There is a paradigm, 

however, designed to distinguish these two learning processes. The cued version of the 

ASRT task (Howard, & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013) is able to 

measure both learning processes in parallel. Here, statistical learning refers to the 

acquisition of probabilistic (frequency) information. Participants learn the shorter-range 

relationship between visual stimuli that is primarily based on frequency (differentiating 

between more frequent and less frequent stimulus chunks). Additionally, sequence 

learning refers to the acquisition of order-based information. Thus, participants learn a 
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series of stimuli that repeatedly occur in the same (deterministic) order, intermixed with 

random stimuli (resulting in an alternating sequence structure). From a theoretical 

perspective, it is important to note that at the level of transitional probabilities, statistical 

learning and sequence learning can be considered similar. Whereas statistical learning (as 

measured in the ASRT task) refers to the acquisition of second-order transitional 

probabilities that are less than one, sequence learning refers to the acquisition of second-

order transitional probabilities that are equal to one. Despite the fact that both can be 

viewed as acquisition of transitional probabilities, a growing body of evidence suggests 

that they exhibit at least partially different characteristics both at behavioral and neural 

level (Howard, & Howard, 1997; Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; 

Simor et al., 2019). Shorter-range probabilistic information (i.e., statistical learning) is 

typically acquired incidentally and relatively rapidly (Kóbor et al., 2018; Simor et al., 

2019). In contrast, acquisition of the alternating sequence may occur either incidentally 

or intentionally with gradually improving performance in both cases (although an 

intentional learning condition typically results in faster sequence acquisition compared to 

an incidental learning condition) (Howard, Howard, Japikse, DiYanni, et al., 2004; 

Howard, & Howard, 1997; Simor et al., 2019). Furthermore, statistical and sequence 

learning appear to have different electrophysiological characteristics, suggested by event-

related potentials during learning (Kóbor et al., 2018) as well as by neural oscillations 

during consolidation (Simor et al., 2019).  

The present study focuses on testing procedural hyperfunctioning in children with 

TS and investigates two aspects of procedural learning, namely, statistical learning and 

sequence learning using the ASRT task. Since previous ASRT studies showed that a cued, 

instructed version of the task results in relatively faster acquisition of the alternating 

sequence (e.g., Kóbor et al., 2018; Simor et al., 2019), enabling to measure statistical and 

sequence learning in the same time frame (i.e., within one learning session), we also chose 

this cued version in the current study. As previous research on TS and procedural learning 

did not provide first-hand evidence on these two aspects of procedural learning, we follow 

an exploratory approach to test which aspect is affected or may even support the 

procedural hyperfunctioning in TS.  

2. Materials and methods 
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2.1. Participants 

Twenty-seven children diagnosed with TS between the age of 10 and 15 were 

recruited through a regional child psychiatry hospital in Budapest, Hungary. They had 

been diagnosed with TS based on the DSM-V criteria (APA, 2013). TS and any 

comorbidities have been diagnosed by a team of child psychiatrist, clinical psychologist 

and special education teacher following a minimum one-week-long stay and observation 

in the hospital. The TS children visit the hospital regularly later as well for check-ups and 

treatment. Hence, comorbidities have not been evaluated as a part of the present study but 

were previously diagnosed in the hospital. Children with comorbid psychiatric or 

neurodevelopmental disorders were excluded from the analysis except for the ones with 

comorbid attention deficit hyperactivity disorder (ADHD) or obsessive-compulsive 

disorder (OCD) since the presence of these disorders are common in TS (Robertson, 

2015). Three children were excluded from the analyses due to comorbid disorders: one 

child had comorbid depression, OCD, and ADHD, one child had comorbid depression, 

anxiety disorder, and ADHD, and one child had comorbid autism spectrum disorder and 

ADHD. Moreover, medication was also an exclusionary criterion. From the recruited 27 

participants, five participants were taking medication during the time of testing. Out of 

the five participants, two of them had some comorbid diagnoses other than ADHD or 

OCD. Therefore, additional three participants were excluded from the analyses due to 

medication. In sum, we excluded six participants due to comorbid diagnoses and 

medication and data of 21 children with TS (18 boys and three girls) were analyzed. In 

this final sample, three children met the criteria for comorbid ADHD and one child was 

diagnosed with comorbid OCD and ADHD.  

Ninety-nine typically developing (TD) children participated in the study from 

local schools. From the TD group, we matched 21 children one-to-one to the TS children 

based on sex and age. If more than one TD participant met the matching criteria for a 

participant with TS, we selected the one who was closest to the participant with TS in age 

measured in months and were in the same school grade. The individuals in the pairs did 

not differ more than six months in age and were in the same school grade. None of the 

matched TD children had any psychiatric, neurological, or neurodevelopmental disorders 

according to parental reports. All participants were native Hungarian speakers, and they 

had normal or corrected-to-normal vision. Table 2.1. summarizes the descriptive 

characteristics of the groups alongside with other cognitive measurements often reported 

in TD (Robertson et al., 2017). 
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The experiment composed of two sessions on the same day with a 5-hour delay 

between them. In this study, we report only the first part of the experiment analyzing the 

learning phase of the procedural learning task. Parents of all participants were asked to 

complete the Strength and Difficulties Questionnaire (SDQ; Goodman, 1997) to measure 

hyperactivity, emotional difficulties, conduct, and peer problems. Caregivers of all 

participants provided written consent and children assented to participate in the study 

before testing. The study was approved by the local institutional research ethics 

committee and was conducted in accordance with the Declaration of Helsinki. 

 

Table 2.1. Descriptive data of the participants and performance on the cognitive 

measurements.  

 Group   

 
TD 

(n = 21) 

TS 

(n = 21) 
  

 M SD M SD t p 

Age in months 149.38 16.98 148.43 16.41 0.19 0.85 

School grade 6.00 1.34 5.90 1.34 0.611 0.96 

SDQ total score 8.38 4.64 11.42 6.41 -1.73 0.09 

YGTSS total score – – 17.43 8.12 – – 

WCST perseverative error (%) 16.42 8.64 16.02 7.53 0.16 0.87 

Phonemic verbal fluency 10.76 3.03 10.17 2.74 0.67 0.51 

Semantic verbal fluency 19.79 5.30 18.74 3.40 0.76 0.45 

Counting span 3.38 0.60 3.67 0.97 -1.11 0.28 

Note. The neuropsychological tests are well-known tasks for measuring executive functions. 

Wisconsin Card Sorting Task (Berg, 1948; Mueller & Piper, 2014) was used to measure cognitive 

flexibility. A higher percentage of perseverative errors indicate worse cognitive flexibility. 

Phonemic and semantic verbal fluency (Strauss, Sherman, & Spreen, 2006; for Hungarian 

version, see Tanczos, Janacsek, & Nemeth, 2013a; Tanczos, Janacsek, & Nemeth, 2013b) 

measures the central executive component of the working memory model. Here, verbal fluency 

is measured by the number of correct words. The counting span task (Case, Kurland, & Goldberg, 

1982) is a complex working memory task. Participants’ counting span capacity is calculated by 

the highest set size they were able to recall in the correct order. SDQ = Strength and Difficulties 

Questionnaire. YGTSS = Yale Global Tic Severity Scale. WCST = Wisconsin Card Sorting Task. 
1G-test was used instead of Chi-square test as the assumptions of Chi-square test were not met. 
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2.2. Tasks 

2.2.1. Alternating Serial Reaction Time (ASRT) task 

Statistical and sequence learning was measured by the cued version of the 

Alternating Serial Reaction Time (ASRT) task (Nemeth, Janacsek, & Fiser, 2013). In this 

task, a target stimulus (either a dog’s head or a penguin) appeared in one of the four 

equally spaced, horizontally arranged possible locations (empty circles). Participants 

were instructed to press the corresponding key on the keyboard (Z, C, B or M) as 

accurately and as fast as they could. The stimulus remained on the screen until the 

participants responded, then, after a 120-ms-long delay, the next target appeared. 

The presentation of the stimuli followed an 8-element alternating sequence where 

pattern and random elements alternated with each other (e.g., 1-r-2-r-4-r-3-r, where 

numbers represent the locations from left to right and ‘r’ indicates a randomly selected 

location). In the cued ASRT task, the pattern and random elements are visually 

distinguishable, pattern elements are indicated by the dog’s head and random elements 

are indicated by the penguins. Participants were informed about the presence of the 

sequence structure, they were told that the dogs always follow a predetermined pattern, 

while penguins appear randomly in one of the possible locations. They were instructed to 

find the pattern of the dog’s appearance to improve their performance. The alternation of 

pattern and random elements creates six unique sequence permutations: 1-r-2-r-3-r-4-r, 

1-r-2-r-4-r-3-r, 1-r-3-r-2-r-4-r, 1-r-3-r-4-r-2-r, 1-r-4-r-2-r-3-r, and 1-r-4-r-3-r-2-r. Note 

that each of these six permutations can start at any location (e.g., 1-r-2-r-3-r-4-r and 2-r-

3-r-4-r-1-r are identical sequence permutations). One of the permutations were selected 

to each participant and it was counterbalanced across participants in each group. 

The structure of the ASRT task results in some runs of three successive elements 

– referred to as triplets – more frequent than others. If the sequence is 1-r-2-r-4-r-3-r, 

triplets such as 1-X-2, 2-X-4, 4-X-3, 3-X-1 (X indicates the middle element of the triplet) 

occur often since their last element can be either pattern or random. However, 3-X-2 or 

4-X-2 occur less frequently as the third element could only be random. The more frequent 

triplet types are labeled as “high-frequency” triplets, while the latter types are labeled as 

“low-frequency” triplets (Howard, & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013). 

The labels also refer to the transitional probabilities inside the triplets meaning that the 

third element of a high-frequency triplet is highly predictable from the first element of 

the triplet (with 62.5% probability). In case of the low-frequency triplet, the predictability 

of the final element is lower (12.5%). 
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Furthermore, each element can be categorized by their structure, meaning whether 

they are pattern or random elements (note that these are differentiated by visual cues). 

We can distinguish high-frequency triplets with the last element being a pattern element 

and high-frequency triplets with the last element being a random element. The last 

element of a low-frequency triplet can only be a random element as pattern elements 

always appear with high probability. 

Previous studies have shown that participants perform differently on the different 

triplets. Participants show faster performance on the high-frequency triplets compared to 

the low-frequency ones (e.g., Howard, & Howard, 1997; Janacsek et al., 2012; Takács et 

al., 2018), and they also show faster performance on pattern triplets compared to the 

random ones (e.g., Howard, & Howard, 1997; Kóbor et al., 2018; Simor et al., 2019). 

Therefore, we can differentiate three trial types: (1) trials that belongs to the 

predetermined sequence and are the last element of a high-frequency triplet called pattern 

trials, (2) trials that appear randomly and also are the last element of a high-frequency 

triplet called random high trials, and (3) random elements that appear as the final element 

of a low-frequency triplet labeled as random low trials. 

Different performance on these trial types can help differentiating the two aspects 

of procedural learning, sequence learning and statistical learning (Howard, & Howard, 

1997; Nemeth, Janacsek, & Fiser, 2013). Sequence learning is measured by the difference 

in reaction times between pattern and random high elements. These elements share the 

same statistical properties as they both correspond to the last element of a high-frequency 

triplet, but they differ in sequence properties as one of them is part of the predefined 

sequence while the other appears randomly. Therefore, faster response to the pattern 

compared to the random high trials indicates greater sequence learning. To assess 

statistical learning, we compare the reaction times between random high and random low 

trials. Here, the elements share the sequence structure (both are random) but differ in 

statistical properties as they correspond either to the final element of a high-frequency or 

a low-frequency triplet. Therefore, greater statistical learning is defined as faster reaction 

time to random high than to random low elements. To sum up, statistical learning grasps 

purely frequency-based learning, whereas sequence learning shows the acquisition of 

order information. The structure of the ASRT task and the quantification of the underlying 

learning mechanisms illustrated in Fig. 2.1. 

The task consisted of 20 1-minute-long blocks, each block contained 85 trials. 

Each block started with 5 random trials for practice, then the unique 8-element alternating 
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sequence was presented 10 times. After each block, awareness of the sequence structure 

was measured. Participants were instructed to type the order of the dog’s head using the 

corresponding keys. The sequence report lasted until the participants produced 12 

consecutive responses, ideally, the given 4-element sequence three times. This method 

allowed us to determine the duration (in terms of blocks) participants needed to discover 

the sequence as defined by consistently reporting the given sequence with an at least 70% 

accuracy from that point. We labeled this variable as the timing of the discovery of the 

sequence. We also quantified the average knowledge about the sequence formed by the 

end of the task. We used each reported sequence after the last five blocks and calculated 

how many responses out of the 12 was correct after each block. Then the mean of these 

percentile variables was calculated for each participant. We labeled this average of the 

reports as explicit knowledge.  

 

Figure 2.1. An example of sequence structure, (A) triplet types and the underlying learning 

mechanisms (B) in the cued Alternating Serial Reaction Time (ASRT) task. In the example 

of the alternating sequence structure (A), numbers indicate pattern elements and ‘r’ indicates a 

randomly selected location. The alternating sequence makes some runs of three consecutive 

elements more frequent than others. Based on the structure, among high-frequency triplets, we 

can differentiate pattern high triplets (with red shading in Fig.2.1A and red font in Fig.2.1B) and 

random high triplets (with gold shading in Fig.2.1A and gold font in Fig.2.1B). Low-frequency 

triplets can only end with a random element (random low triplets, with blue shading in Fig.2.1A 

and blue font in Fig1B). Statistical learning is quantified by contrasting the reaction time of the 

random high and random low triplets (gold vs. blue, the right column of the table). Sequence 

learning is quantified by contrasting the reaction time of the pattern high and random high triplets 

(red vs. gold, the top row of the table). Adapted from Nemeth, Janacsek, and Fiser (2013). 
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2.2.2. Yale Global Tic Severity Scale (YGTSS) 

Tic severity was measured by the Yale Global Tic Severity Scale (Leckman et al., 

1989), which is a reliable and conventional measurement of tic severity. YGTSS is a 

semi-structured interview, which rates motor and vocal tics based on their number, 

frequency, complexity, intensity, and interference with everyday life on a scale of zero to 

five for motor and phonic tics individually.  The Total Score reported here consists of the 

motor and phonic scores with a maximum score of 50. Tic severity was measured 

regarding symptoms in the last week. 

2.3. Data analysis 

Statistical analysis of the ASRT task was based on previous studies (Kóbor et al., 

2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019). The 20 1-minute-long blocks 

were collapsed into four epochs, each containing five blocks. Each trial was categorized 

as the final element of a pattern high, random high or random low triplet. Two types of 

low-frequency triplet were excluded from the analysis, repetitions (e.g., 222, 444) and 

trills (e.g., 121, 242), since participants often show pre-existing response tendencies to 

these items (Song et al., 2007a, 2007b). The median of RT data (for correct responses) 

was calculated for each participant in each epoch, separately for the three types of triplets. 

We also calculated learning scores separately for each epoch for the two types of 

underlying learning processes. Statistical learning scores were calculated as the difference 

in RT between random high and random low triplets, while sequence learning scores were 

calculated as the difference in RT between pattern high and random high triplets. 

To examine the two learning mechanisms, RT data were analyzed in a mixed 

design ANOVA across the four epochs. Statistical learning was quantified with a mixed-

design ANOVA with FREQUENCY (random high-frequency and random low-frequency 

triplets) and EPOCH (1-4) as within-subjects factors and GROUP (TS and TD) as a 

between-subjects factor. Sequence learning was also quantified with a mixed-design 

ANOVA with ORDER (pattern high-frequency and random high-frequency triplets) and 

EPOCH (1-4) as within-subjects factors and GROUP (TS and TD) as a between-subjects 

factor. To test for post hoc pairwise comparisons, we used LSD (Least Significance 

Difference) tests. The Greenhouse-Geisser epsilon correction was used when necessary. 

As a measure of effect size partial eta-squared (η2
p) is reported. 

3. Results 
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To compare statistical learning among the TS and TD groups, we conducted a 

mixed-design ANOVA on the RT (see Data analysis). The ANOVA revealed a significant 

FREQUENCY main effect (F(1, 40) = 71.4, p < .001, η2
p = 0.64), meaning that RTs were 

faster on random high-frequency triplets compared with random low-frequency triplets. 

The main effect of EPOCH was also significant (F(3,120) = 44.90, p < .001, η2
p = 0.53), 

indicating that, over groups, participants became faster with practice on both random high 

and random low-frequency triplets. The FREQUENCY*GROUP interaction was at the 

trend-level (F(1, 40) = 3.31, p = .076, η2
p = 0.076), while 

FREQUENCY*EPOCH*GROUP interaction was significant (F(3, 120) = 2.96, p = .035, 

η2
p = 0.07), indicating that the time course of statistical learning was different between 

the groups (see Fig. 2.2). Follow-up analysis on the statistical learning score revealed a 

difference in the first epoch between the groups: The TS group showed higher learning 

than the TD group (TS: M = 27.38 ms, SD = 31.45 ms; TD: M = -0.79 ms, SD = 28.91 

ms; p = .004; see Fig. 2.2C). There was no difference in learning in the remaining epochs 

(all ps > .203). The main effect of GROUP and other interactions were not significant (all 

ps > .291). In order to investigate whether the inclusion of ADHD and OCD comorbidities 

in the TS group could confound the results, we conducted the same analysis as above on 

the 17 children with TS without any comorbidities and the matched TD group. The 

analysis showed the same results as described above, indicating that the inclusion of TS 

participants with ADHD and OCD comorbidities does not confound the results (see 

Supplementary Material). 
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Figure 2.2. Statistical learning in the TD (A) and TS group (B). Dashed lines represent the TD 

group, continuous lines represent the TS group. Blue lines with square symbols indicate the 

reaction time (ms) on the random low triplets, gold lines with triangle symbols indicate the 

reaction time (ms) on the random high triplets. Statistical learning is indicated by the distance 

between the blue and gold lines. (C) Statistical learning score in the TD and TS group. Dashed 

bars represent the TD group, filled bars represent the TS group. Statistical learning score is 

computed by extracting reaction time of the random high triplets from reaction time of the random 

low triplets, separately in each epoch. Higher learning score indicates better learning.  Error bars 

denote standard error of mean. **p < .01. 

 

To further examine the difference in statistical learning in the first epoch of the 

task between the TS and TD groups, we performed an additional analysis focusing on 

block-level data. We conducted a mixed design ANOVA with FREQUENCY (random 

high-frequency and random low-frequency triplets) and BLOCK (1-5) as within-subjects 

factors and GROUP (TS and TD) as a between-subjects factor. The main effect of 

FREQUENCY was significant (F(1, 40) = 8.70, p = .005, η2
p = 0.17), participants showed 

faster RTs on the random high-frequency triplets compared to the random low-frequency 

triplets. The main effect of BLOCK was also significant (F(4, 160) = 2.66, p = .035, η2
p 

= 0.063), suggesting reaction times became faster on both triplets with practice in both 

groups. The FREQUENCY*GROUP interaction was significant (F(1, 40) = 14.24, p = 

.001, η2
p = 0.263), the TS group showed faster RTs to random high-frequency triplets 

than random low-frequency ones overall in the first epoch (M = 32.30, SD = 32.86), while 
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the TD group did not show learning in the first epoch (M = -3.96, SD = 29.31). Crucially, 

FREQUENCY*BLOCK*GROUP interaction was marginally significant (F(4, 160) = 

2.17, p = .074, η2
p = 0.05). The post hoc analysis revealed that the TD group showed 

similar RTs on random high-frequency and random low-frequency trials in four out of 

five blocks (ps > .206), and even marginally faster responses on random-low frequency 

compared to random-high frequency triplets in the remaining block (i.e., the opposite 

direction than expected for statistical learning; p = .073), suggesting that the TD group 

did not acquire the statistical knowledge in Epoch 1. In contrast, the TS group showed 

comparable RTs on both trial types only in the first block (p = .949), and showed 

marginally significant (Blocks 2 and 4, ps < .084) or significant (Blocks 3 and 5, ps < 

.026) statistical learning in the remaining blocks. This block-wise analysis provides 

evidence that the difference between the TD and TS groups in the epoch-wise analysis on 

statistical learning is not due to pre-existing response tendencies. Instead, it suggests that 

the TS group acquired the statistical knowledge gradually albeit early in the task (around 

Blocks 2-3), while the TD group required more practice to achieve a similar level of 

knowledge as the TS group (observed in the later epochs). 

To investigate sequence learning, we also used a mixed design ANOVA on the 

RT (see Data analysis). The main effect of ORDER was significant (F(1, 40) = 8.35, p = 

.006, η2
p = 0.17), suggesting that participants showed faster RTs on pattern high-

frequency triplets compared with random high-frequency ones. The main effect of 

EPOCH was also significant (F(2.3, 90.1) = 42.33, p < .001, η2
p = 0.51), indicating that 

participants became faster with practice on both triplets. The significant 

ORDER*GROUP interaction (F(1, 40) = 4.93, p = .032, η2
p = 0.11) suggests that the two 

groups differed in the RT difference between the triplets. Follow-up analysis on the 

learning scores showed that the TD group learned to differentiate between pattern high 

and random high-frequency triplets, but the TS group showed similar RTs on both triplets 

(TD: M = 38.46 ms, SD = 66.11 ms; TS: M = 5.04 ms, SD = 19.71 ms) (see Fig. 2.3). The 

EPOCH*GROUP interaction was at the trend-level (F(2.3, 90.1) = 2.67, p = .068, η2
p = 

0.063), other main effects or interactions were not significant (all ps > .223). We 

conducted the same analysis as above on the TS group without any comorbitidies and the 

matched TD group to investigate whether comorbidities could confound the results. The 

analysis without comorbidities showed identical results as the analysis involving TS 

participants with ADHD and OCD comorbidities (see Supplementary Material). 
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Figure 2.3. Sequence learning in the TD (A) and TS group (B). Dashed lines represent the TD 

group, continuous lines represent the TS group. Red lines with circle symbols indicate the reaction 

time (ms) on the pattern high triplets, gold lines with triangle symbols indicate the reaction time 

(ms) on the random high triplets. Sequence learning is indicated by the distance between the red 

and gold lines. (C) Sequence learning score in the TD and TS group. Dashed bars represent the 

TD group, filled bars represent the TS group. Sequence learning score is computed by extracting 

reaction time of the pattern high triplets from reaction time of the random high triplets, separately 

in each epoch. Higher learning score indicates better learning.  Error bars denote standard error 

of mean.  

To evaluate the relationship between tic severity and procedural learning in the 

TS group, we correlated statistical and sequence learning scores with the YGTSS total 

score. First, we investigated the relation between statistical learning and tic severity. 

One participant showed extremely high statistical learning score according to Tukey’s 

(1977) criterion (more than 1.5 times the interquartile range) and was an outlier with 

regard to the relation of statistical learning and tic severity. We excluded this participant 

from the correlation analysis. The analysis revealed a negative relationship at the trend-

level (r = -.43, p = .06), suggesting better statistical learning in children with less severe 

tics (Fig. 2.4A). The correlation between sequence learning and tic severity was not 

significant (r = .18, p = .44; Fig. 2.4B). 
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Figure 2.4. Correlation between (A) YGTSS total score and statistical learning score and (B) 

between YGTSS total score and sequence learning score. YGTSS = Yale Global Tic Severity 

Scale. Statistical learning score is the difference in RT between random high and random low-

frequency triplets. Sequence learning score is the difference in RT between pattern high and 

random high-frequency triplets. 

In order to check whether participants followed the instruction to find the 

predetermined 4-element sequence of the pattern stimulus’ (dog’s head) appearance, we 

asked them to report the sequence of the dog’s head after each block. According to the 

results, explicit knowledge about the sequence was present early in the task, the timing 

of discovery was around the 6th block, and it did not differ between the TS and TD groups 

(t(34) = 0.199, p = .843; MTS = 5.61, SDTS = 6.55; MTD = 6.05, SDTD = 6.82). Explicit 

knowledge of the sequence also suggests that the participants followed the instructions, 

the mean explicit knowledge score in the last epoch was 89% (SD = 20%) in the TS and 

79% (SD = 29%) in the TD group. Moreover, we found no significant difference between 

the groups (t(40) = -1.25; p = .218), suggesting that similar explicit knowledge emerged 

in the groups about the predetermined sequence structure. 

4. Discussion 

The goal of the present study was to examine how two aspects of procedural 

learning, namely statistical and sequence learning, are affected in TS, and test whether 

these aspects contribute to the procedural hyperfunctioning observed in previous studies. 

We used the cued version of the Alternating Serial Reaction Time task, which allowed us 

to examine the two aspects simultaneously, in the same experimental design.  We found 

enhanced sensitivity to statistical information in TS, while the TS group showed impaired 
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sequence learning. Furthermore, executive functions and working memory capacity did 

not differ between the groups (Table 2.1). 

4.1. Sensitivity to statistical information  

Children with TS showed enhanced sensitivity to statistical information compared 

to their typically developing peers. This result is in line with previous studies showing 

speeded processing on tasks tapping into procedural learning and memory (Dye et al., 

2016; Shephard et al., 2019; Takács et al., 2018; Walenski et al., 2007). In the present 

study, the enhanced sensitivity to statistical information was more prominent at the 

beginning of the task. The steepness of the learning curve is a sensitive index of how 

learning occurs in a specific group (Barnes, Howard, Howard, Kenealy, & Vaidya, 2010). 

Prior studies on neurotypical population showed that statistical learning reach a plateau 

early, hence, probabilistic information is learned rapidly and then remains stable (Kóbor 

et al., 2018; Simor et al., 2019). Our results showed the same pattern in both groups, 

however, it happened faster in the TS than in the TD group. Similar pattern was reported 

in the study of Takács et al. (2018), in which children with TS showed better learning at 

the end of the first learning session than their TD peers. The study of Takács et al. (2018) 

employed a probabilistic sequence learning task, in which participants acquire 

probabilistic information in an incidental manner. In that task version with non-cued 

stimuli, learning may occur in a slower pace than in the cued version of the task (note that 

the knowledge of statistical information remains consciously inaccessible to participants 

even in the cued version of the task; for more details, see Simor et al., 2019). Thus, faster 

procedural learning in TS can be found in both non-cued and cued learning situations, 

and in a more speeded manner in the latter case. 

Our result is in line with previous studies that used tasks with probabilistic 

sequence structure (Shephard et al., 2019; Takács et al., 2018). While these tasks were 

linked to procedural learning processes, it was not clear whether sensitivity to sequential 

or to probabilistic information (statistical learning) led to the enhanced performance. 

According to the results of the present study, enhanced sensitivity to probabilistic 

information may contribute to procedural hyperfunctioning. This is in line with the notion 

of procedural hyperfunctioning in TS, supported by Takács et al. (2018) and Shephard et 

al. (2019). The probabilistic sequence learning measured by the study of Takács et al. 

(2018) and statistical learning investigated in the present study are highly similar, as both 

require the acquisition of frequency-based information. Moreover, in the study of 
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Shephard et al. (2019), children with TS showed difficulties with transitioning from 

sequence to non-sequence blocks in the SRT task, indicating hyperlearning.  

Sensitivity to statistical information might also explain the results of studies 

showing enhanced performance on language-based tasks (Dye et al., 2016; Walenski et 

al., 2007). The acquisition of complex probabilistic regularities (extraction of 2nd order 

non-adjacent transitional probabilities) has been found to be crucial in language 

acquisition and processing (Conway, Bauernschmidt, Huang, & Pisoni, 2010; Misyak, 

Christiansen, & Tomblin, 2010; Nemeth et al., 2011; Saffran et al., 1996; Thompson & 

Newport, 2007). We can see this, for instance, in studies showing that transitional 

probabilities between pairs of syllables are essential in the detection of word boundaries 

(Saffran et al., 1996). Processing statistical information is also part of syntactic 

processing, as transitional probabilities between word-like units help to detect phrase 

boundaries (Thompson & Newport, 2007). Moreover, processing of non-adjacent 

dependencies and individual differences in statistical learning are associated with 

differences in language ability (Misyak et al., 2010). Nemeth et al. (2011) also found 

evidence for the relation of statistical learning (with non-adjacent dependencies) and 

sentence processing in healthy adults. Kidd (2012) also reported an empirical 

demonstration of the association between statistical learning and syntactic processing in 

children. These results suggest that the processing of statistical information is important 

in language acquisition and language processing from infancy to adulthood.  

Therefore, the “speeded grammatical processing” seen in children with TS (Dye 

et al., 2016; Walenski et al., 2007) could reflect their enhanced sensitivity to statistical 

information. In detail, the non-word repetition task used in the study of Dye et al. (2016) 

involves rule-governed (de)composition of the non-words. Participants do not simply 

repeat the non-words, they separate them into phonological segments then attempt to 

reconstruct them. This process is influenced by the phonotactical constraints of the 

language (see e.g., Coady & Evans, 2008). Acquiring and using phonotactical constraints 

within words requires detecting and using transitional statistics, i.e., statistical learning. 

Moreover, the faster production of regular past tenses in TS (Walenski et al., 2007) can 

also reflect enhanced sensitivity to statistical information, as rule-governed composition 

of morphemes also involves transitional statistics. However, it is not clear how enhanced 

sensitivity to probabilistic information can explain the speeded tool but not animal 

naming in TS (Walenski et al., 2007). It might be possible that better statistical learning 
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has an additive effect, which can be generalized to tool naming (and perhaps to other 

procedural functions), but further studies are warranted to investigate this notion. 

One can argue that other alternative explanations may better explain the group 

differences found in the present study. One such alternative explanation could be a 

general “speeded processing” in TS, that could be captured by generally faster reaction 

times, irrespective of the stimulus types. However, generally faster reaction times cannot 

alone explain the accumulating evidence of procedural hyperfunctioning in TS. Takács et 

al. (2018) found that children with TS showed more prediction errors indicating enhanced 

procedural functions, while in the study of Shephard et al. (2019) children with TS 

showed difficulties with the transition from sequenced to non-sequenced learning. None 

of these learning measures are directly related to “speeded processing”. Furthermore, 

general “speeded processing” cannot explain the findings of Walenski et al. (2007). If 

children with TS had overall faster response times, it would have manifested not only in 

producing regular past tenses and tool naming (related to procedural functions) but also 

in producing irregular past tenses and animal naming (related to declarative functions) 

(Walenski et al., 2007). However, the study of Walenski et al. (2007) showed no 

differences between the TS and TD groups in response times related to declarative 

functions, suggesting that general “speeded processing” cannot explain their results. 

Moreover, our current results also do not support generally faster processing or response 

execution as we did not find a difference between the TS and the control group in average 

reaction times (indicated by the non-significant main effect of Group; see Results). Note 

that the general “speeded processing” notion detailed above is different from the Clinical 

Extension Hypothesis, introduced in the study of Dye et al. (2016). This hypothesis 

proposes that neurobiological alterations in TS might result in speeded performance 

supported by processes related to the neurobiological alterations.  

4.2. Sensitivity to sequential information 

Our results indicate impaired sequence learning in TS as children did not 

differentiate between pattern high-frequency and random high-frequency triplets. Similar 

alterations have been demonstrated in previous studies of motor learning in TS (Avanzino 

et al., 2011; Palminteri et al., 2011; Stebbins et al., 1995). Avanzino et al. (2011) found 

impaired performance in TS children on a sequential single-hand finger-tapping task. 

Similarly, Stebbins et al. (1995) reported deficits in a motor learning task in TS. 

Furthermore, in the study of Palminteri et al. (2011), TS and TD showed different 
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performance in a motor skill learning task, where triplets were associated with different 

outcomes: high reward or minimal reward. While participants with TS showed enhanced 

learning in the high reward condition, the group difference was reversed when only 

minimal reward was present. Therefore, possible sequence learning impairment can be 

modified or even masked by other involved processes such as the reward system. In our 

study, the task was designed to clearly differentiate between sequence learning and 

sensitivity to probabilistic information.  

Accumulating evidence based on neurotypical population suggests a dissociation 

between statistical learning (processing of frequency-based information) and sequence 

learning (processing of serial order information). First, previous studies suggested at least 

partially different developmental trajectories of statistical and sequence learning 

(Nemeth, Janacsek, & Fiser, 2013). Second, while statistical information is typically 

acquired relatively rapidly and incidentally, sequence learning seems to occur with 

gradually improving performance, irrespective of whether it occurs incidentally or 

intentionally (at least, when measured with the ASRT task; Howard, Howard, Japikse, 

DiYanni, et al., 2004; Howard, & Howard, 1997; Simor et al., 2019). Furthermore, they 

are distinguishable on the neural level as suggested by event-related potentials during 

learning (Kóbor et al., 2018) and by neural oscillations during consolidation (Simor et al., 

2019). The present study further supports the notion of multifactorial procedural learning, 

as we found a dissociation between two aspects of learning in the clinical group: the TS 

group showed enhanced statistical learning and impaired sequence learning on the ASRT 

task. It is possible that the two aspects of learning compete with one another in TS. 

Therefore, having enhanced processing on one of them results in having a disadvantage 

on the other. Future studies are warranted to test this possibility. 

Note that we used a cued version of the ASRT task since previous studies showed 

relatively faster acquisition of the alternating sequence in this task version (e.g., Kóbor et 

al., 2018; Simor et al., 2019), enabling to measure statistical and sequence learning in the 

same time frame (i.e., within one learning session). Consequently, while statistical 

learning occurred incidentally in the current study, sequence learning could have been 

supported by incidental as well as intentional learning processes. The intention to learn 

may have interfered with the acquisition of the alternating sequence selectively in the TS 

group but not in the TD group. This interpretation, however, seems unlikely. Both groups 

showed similar working memory and executive function capacity (see Table 2.1), 

suggesting similar cognitive resources that are required to follow the instructions in the 
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task. Indeed, both groups acquired similar level of explicit knowledge about the sequence 

(as measured by the sequence reports after each block). The weaker performance in the 

TS group appeared to be limited to weaker sequence learning as measured by the reaction 

time learning scores. Additionally, the fast pace of the task (typical responses under 500 

ms) makes it difficult for the consciously accessible sequence knowledge to substantially 

influence participants' response times, leading to at least somewhat dissociable measures 

(Horvath et al., 2020). In this view, the sequence report may serve as a more explicit 

measure of sequence knowledge, and the reaction time learning scores may reflect a more 

implicit, incidental measure of sequence knowledge, even in an intentional learning 

situation. This pattern of findings suggests that, even though participants performed a 

cued version of the task and had intention to learn the alternating sequence, the TS group's 

weaker performance may be selective to the implicit measure of sequence acquisition, 

irrespective of whether learning occurs incidentally or intentionally. Nevertheless, future 

studies are needed to directly test this possibility.  

4.3. Procedural functioning and symptom severity in TS 

We tested the spectrum of tic severity using the Yale Global Tic Severity Scale. 

Sensitivity to statistical information showed marginally significant negative correlation 

with the severity of tics, indicating that enhanced sensitivity to statistical information can 

emerge in conjunction with less severe tics. Besides tic severity, premonitory urges could 

also relate to sensitivity to statistical information. Premonitory urges are described as a 

feeling of tightness or tension resulting in discomfort or distress and only can be relieved 

by performing specific tics (Robertson et al., 2017). However, the relation between 

premonitory urges and tics is not deterministic, tics can be present without premonitory 

urges. It has been shown that premonitory urges are associated with interoceptive 

awareness (Ganos et al., 2015).  Interoceptive information is processed implicitly. Being 

highly sensitive to implicit statistical information could lead to being more aware of or 

sensitive to premonitory urges. The relation between procedural hyperfunctioning and 

sensitivity to premonitory urges may also converge on the neural level as supplemental 

motor area is important in both processes (Conceição et al., 2017; Grafton, Hazeltine, & 

Ivry, 2002; Leckman & Cohen, 1999; Peterson, 1999). Future studies should explore this 

connection between sensitivity to statistical information and to premonitory urges, 

especially considering the importance of premonitory urge detection in therapy (see habit 

reversal training, Piacentini & Chang, 2005). 
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4.4. Limitations and clinical implications 

The finding of the present study is limited to a specific TS population, namely, 

those with less severe symptoms and without comorbidities. In our study, participants 

with TS are characterized with mild to moderate symptoms, indicated by the YGTSS. 

Future studies should test whether procedural hyperfunctioning is present in children with 

severe symptoms. Additionally, most of the children in the clinical group had TS without 

comorbidities (only 3 children had comorbid ADHD and 1 comorbid ADHD and OCD), 

therefore, sensitivity to statistical information seems to be specific to TS. Comorbidities 

can contribute to a greater interindividual variability in procedural functions and may 

mask the differences specifically related to TS. Future studies are warranted to examine 

sensitivity to statistical information in subgroups of TS population, such as TS with 

specific comorbidities. Future investigations also seem to be warranted on whether these 

findings extend to disorders with similar neurocognitive profiles as TS, such as OCD 

(Roth, Baribeau, Milovan, O'Connor, & Todorov, 2004). 

 Our study has both clinical and educational implications. Procedural memory 

plays an important role in skill acquisition, such as sports, language, or even social skills 

(Frith & Frith, 2012; Kaufman et al., 2010; Lieberman, 2000). Strong skill-based 

competencies in TS could help reduce the disadvantages related to the disorder. 

Moreover, skill-based training using frequency-based information might also help in 

reducing behavioral symptoms and learning disadvantages. Future studies are needed to 

develop such training methods or improve already existing ones, and to test their effects 

in practice. 

4.5. Conclusion 

In the present study, our aim was to investigate two aspects of procedural learning, 

namely statistical and sequence learning, and test whether these aspects of learning 

contribute to the procedural hyperfunctioning in TS proposed by previous studies. Our 

results showed further evidence for enhanced procedural functions in TS with a 

heightened sensitivity to statistical information, while sequence learning was impaired in 

TS. These results suggest that sensitivity to frequency-based information may contribute 

to the procedural hyperfunctioning in TS, shedding light on a cognitive advantage in TS.  
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III. Study 3: Access to procedural memories after one year: evidence for 

robust memory consolidation in Tourette syndrome 

Publication: 

Tóth-Fáber, E., Tárnok, Z., Takács, Á., Janacsek, K., & Nemeth, D. (2021). Access to 

procedural memories after one year: evidence for robust memory consolidation in 

Tourette syndrome. Frontiers in Human Neuroscience, 458. 

https://doi.org/10.3389/fnhum.2021.715254 

Abstract 

Tourette syndrome is a childhood-onset neurodevelopmental disorder characterized by 

motor and vocal tics. On the neural level, tics are thought to be related to the disturbances 

of the cortico-basal ganglia-thalamo-cortical loops, which also play an important role in 

procedural learning. Several studies have investigated the acquisition of procedural 

information and the access to established procedural information in TS. Based on these, 

the notion of procedural hyperfunctioning, i.e., enhanced procedural learning, has been 

proposed. However, one neglected area is the retention of acquired procedural 

information, especially following a long-term offline period. Here, we investigated the 

five-hour and one-year consolidation of two aspects of procedural memory, namely 

serial-order and probability-based information. Nineteen children with TS between the 

ages of 10 and 15 as well as 19 typically developing gender- and age-matched controls 

were tested on a visuomotor four-choice reaction time task that enables the simultaneous 

assessment of the two aspects. They were retested on the same task five hours and one 

year later without any practice in the offline periods. Both groups successfully acquired 

and retained the probability-based information both when tested five hours and then one 

year later, with comparable performance between the TS and control groups. Children 

with TS did not acquire the serial-order information during the learning phase; hence, 

retention could not be reliably tested. Our study showed evidence for short-term and long-

term retention of one aspect of procedural memory, namely probability-based information 

in TS, whereas learning of serial-order information might be impaired in this disorder. 

  

https://doi.org/10.3389/fnhum.2021.715254
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1. Introduction 

Tourette syndrome (TS) or Tourette Disorder is a childhood-onset neurodevelopmental 

disorder characterized by at least one vocal tic and multiple motor tics, which are not 

explained by medications or other medical conditions (APA, 2013). Tics can be expressed 

as simple or complex movements or vocalizations that are usually fast, abrupt, and semi-

voluntary (APA, 2013). On the neural level, tics are thought to be related to the 

disturbances of the cortico-basal ganglia-thalamo-cortical (CBGTC) circuits (Albin et al., 

2003; Albin & Mink, 2006; Maia & Frank, 2011; Mink, 2001; Peterson et al., 1998; 

Peterson et al., 2003; Stern et al., 2000). On the cognitive level, these circuits are also 

related to procedural learning (Doyon et al., 2009; Janacsek et al., 2020; Poldrack & 

Packard, 2003), which is considered to be the basis of skills and habits (Kaufman et al., 

2010; Ullman, 2004). It has been proposed that tics and habits have similarities: both are 

stereotyped actions that are automatically executed and hard to inhibit (Conceição et al., 

2017). Several studies have shown enhanced procedural learning, termed procedural 

hyperfunctioning, in TS (Dye et al., 2016; Shephard et al., 2019; Takács et al., 2018; 

Tóth-Fáber, Tárnok, et al., 2021). An important question emerges: does procedural 

hyperfunctioning in TS lead to persistent changes?  Processing information does not stop 

at the end of a learning session, and long-term memory performance is based on the 

stabilization of encoded information, that is, on the consolidation of information 

(McGaugh, 2000; Walker, 2005). However, little is known about whether procedural 

hyperfunctioning persists over the consolidation periods and whether consolidation of 

procedural information differs in TS and neurotypical controls. In the present study, we 

focused on this question and investigated the short-term (five-hour) and long-term (one-

year) consolidation of procedural information in children with TS. 

A potential link has been suggested (Goodman et al., 2014; Takacs, Münchau, 

Nemeth, Roessner, & Beste, 2021) between procedural memory formation and habitual 

behavior both in everyday life and as a clinical phenomenon. Namely, tics that consist of 

sequential actions might rely on procedural memory associations. As mentioned above, 

similar neural networks are involved in the pathophysiology of TS and procedural 

learning. CBGTC circuits play a key role in the development of tics (Goodman et al., 

2014; Worbe et al., 2010) and tics may result from a heightened direct pathway activity 

relative to the indirect pathway activity in the CBGTC loop (Maia & Frank, 2011; Mink, 

2001). Tic-related activation has been shown in the premotor cortex and sensorimotor 
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cortex (Bohlhalter et al., 2006; Stern et al., 2000; Wang et al., 2011), in the supplementary 

motor area (Bohlhalter et al., 2006; Wang et al., 2011; Worbe et al., 2015), putamen 

(Bohlhalter et al., 2006; Stern et al., 2000; Wang et al., 2011), globus pallidus (Bohlhalter 

et al., 2006; Wang et al., 2011) and thalamus (Bohlhalter et al., 2006; Wang et al., 2011; 

Worbe et al., 2015). Accumulated evidence shows that these brain areas also play a role 

in procedural learning. Specifically, the formation of skills and habits in procedural 

memory has been linked to the basal ganglia, particularly to the striatum, and relies on 

the CBGTC loops (Doyon et al., 2009; Janacsek et al., 2020; Poldrack & Packard, 2003). 

Given the involvement of similar neural networks in procedural memory and the 

pathophysiology of TS, alterations of procedural functions can be expected in TS. 

Procedural learning enables us to extract the regularities from the environment 

and underlies the acquisition and storage of skills and habits (Kaufman et al., 2010; 

Ullman, 2004). Humans are highly proficient in the extraction of transitional 

probabilities, that is, in the learning of predictive relations between events (i.e., the 

probability of event B following event A), even when these are nonadjacent (e.g., A – x 

– B, where the intervening event has no predictive value) (Conway, 2020; Frost & 

Monaghan, 2016). From a plethora in the environment, different kinds of regularities can 

be extracted. Two previously proposed regularities in relation to procedural memory are 

(1) serial order-based information and (2) probability-based, statistical information 

(Howard, Howard, Japikse, DiYanni, et al., 2004; Nemeth, Janacsek, & Fiser, 2013). 

Serial order-based information means that transitional probabilities between the elements 

are 1.0, which creates a deterministic serial order of events: for instance, event A is always 

followed by event B. Probability-based information refers to regularities where 

transitional probabilities are less than 1.0; here, higher transitional probability means 

higher predictability. Hence, extracting probability-based information enables the 

differentiation between more and less probable outcomes to learn stochastic relations 

between events: for instance, when event A is followed by event B in 75% of the cases 

and followed by event C in 25% of the cases. Although both regularities can be considered 

as learning of transitional probabilities (also often referred to as statistical learning), prior 

studies have shown considerable differences between them in healthy young adults 

(Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019; Takács et al., 

2021). They revealed that the learning of serial-order regularities develops rather 

gradually, whereas the learning of probability-based regularities reaches its plateau in a 

quick manner (Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019), 
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which is also reflected in the neurophysiological correlates  (Kóbor et al., 2018; Takács 

et al., 2021). In other words, the learning of serial-order regularities occurs relatively 

slowly, whereas participants acquire probability-based regularities rapidly and then show 

consistent, stable performance. Prior studies have also shown that successful acquisition 

of serial-order and probability-based information leads to the formation of long-term 

memory representations (Kóbor et al., 2017; Romano et al., 2010; Simor et al., 2019; 

Tóth-Fáber, Janacsek, & Németh, 2021; Zavecz et al., 2020). Thus, learning of these 

regularities might influence behavior on a longer timescale and outside of a lab 

environment as well. 

Long-term memory performance is based on consolidation, that is, the 

stabilization of encoded memory representations (McGaugh, 2000; Walker, 2005). 

Empirically, consolidation is assessed by the difference in memory performance at the 

end of a session and at the beginning of the next one, following a delay (i.e., offline 

period). Consolidation can be revealed by successfully retained knowledge or by delayed 

gains of performance (i.e., offline learning) after the offline period (Robertson et al., 

2004). Consolidation of any information is a complex process, which can be influenced 

by the encoded information, time (ultra-fast, short-or long-term consolidation), and the 

nature of the offline period (i.e., sleep or time spent awake) (Robertson, Pascual-Leone, 

& Press, 2004; Song et al., 2007b). Consolidation of serial-order and probability-based 

regularities has been investigated before, both over short-term (Simor et al., 2019; Zavecz 

et al., 2020) and long-term offline periods (Kóbor et al., 2017; Romano et al., 2010; Tóth-

Fáber, Janacsek, et al., 2021). Romano et al. (2010) and Kóbor et al. (2017) focused on 

probability-based regularities in neurotypical adults, in both cases after a one-year offline 

period. Romano et al. (2010) showed successful retention of probability-based 

regularities in perceptual-motor skill experts (i.e., videogame and piano players) and non-

experts. Kóbor et al. (2017) went beyond the study of Romano et al. (2010) by 

incorporating interference manipulation into their study design. They have demonstrated 

that memory representations of probability-based regularities are not only resistant to 

forgetting over a one-year offline period but are also resistant to interference. 

Furthermore, learning of serial-order and probability-based regularities seems to result in 

long-term memories in the developing mind, as well: Tóth-Fáber, Janacsek, et al. (2021) 

found evidence for one-year retention of such regularities in typically developing children 

and adolescents, thus extended the prior results on adults (Kóbor et al., 2017; Romano et 

al., 2010) to an age that is crucial in the development of procedural memory (Janacsek et 
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al., 2012; Juhasz et al., 2019; Zwart et al., 2019). In sum, memory representation of these 

regularities seems to be persistent over a long period of time both in neurotypical adults 

(Kóbor et al., 2017; Romano et al., 2010) and typically developing children (Tóth-Fáber, 

Janacsek, et al., 2021). Thus, it is possible to compare procedural memories between 

typical and atypical development after a long offline period. Crucially, extending the 

testing time to one year allows us to close the bridge between the time scale of lab 

experiments (typically hours or days) and real-world observations (i.e., when learning a 

new skill or developing a habit). 

Several studies focused on procedural learning in TS with most showing intact 

(Channon et al., 2003; Takács et al., 2017) or even enhanced procedural functions (Dye 

et al., 2016; Shephard et al., 2019; Takács et al., 2018; Tóth-Fáber, Tárnok, et al., 2021; 

Walenski et al., 2007). Shephard et al. (2019), Takács et al. (2018) and Tóth-Fáber, 

Tárnok, et al. (2021) all employed variations of a well-known procedural learning task, 

the serial reaction time task (SRTT). Consequently, Shephard et al. (2019) showed 

enhanced learning of deterministic serial-order information, whereas Takács et al. (2018) 

and Tóth-Fáber, Tárnok, et al. (2021) showed enhanced learning of probability-based 

information in children and adolescents with TS. In conjunction with the online learning 

tasks, procedural hyperfunctioning has also been shown in tasks that measure the access 

to previously established procedural information, such as grammatical rules or 

vocabulary (Ullman, 2004; Walenski et al., 2007). For example, in the study of Walenski 

et al. (2007), compared to typically developing controls, children with TS showed faster 

production of rule-governed past tenses and faster naming of manipulated objects—both 

of which have been linked to procedural memory (Ullman, 2004). Additionally, Dye et 

al. (2016) provided evidence for enhanced access to established information in the 

phonological domain of language. They used a non-word repetition task that involved 

rule-governed grammatical (de)composition of non-words; therefore, it relied, at least in 

part, on procedural memory. Children with TS showed faster repetition of non-words than 

typically developing controls on this task. Two earlier studies reported findings on such 

tasks and showed faster access to established procedural information in TS in the 

morphological (Walenski et al., 2007) and phonological (Dye et al., 2016) domains of 

language. These findings suggest that not only procedural learning but also access to 

previously consolidated procedural knowledge may be enhanced in TS. This raises the 

question of whether the consolidation of procedural information is also atypical in this 

disorder.  
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Consolidation of procedural information in TS has not received much attention in 

previous research. Takács et al. (2018) incorporated a 16-hour offline period in their study 

design and investigated the learning and consolidation of probability-based regularities 

in children with TS. The TS group showed superior learning, but they showed greater 

forgetting following the overnight offline period than the typically developing controls. 

When controlling for the learning differences and comparing overnight changes as a 

function of prior knowledge, the TS and control groups showed comparable performance. 

Nevertheless, the differences in learning between the TS and typically developing groups 

make the interpretation difficult, and, as Takács et al. (2018) suggested, these results 

should be handled as inconclusive. According to our knowledge, there are no other studies 

up to date that directly investigated procedural consolidation in TS. In sum, it remains 

unresolved whether atypical procedural learning in TS leads to altered consolidation of 

procedural memories.  

The present study focuses on the short- (five-hour) and long-term (one-year) 

consolidation of two aspects of procedural memory, namely serial-order and probability-

based information in children with TS. To test this, we employed a widely used 

procedural learning task, namely the cued version of the Alternating Serial Reaction Time 

(ASRT) task, which enables us to measure the acquisition and consolidation of the two 

regularities simultaneously (Nemeth, Janacsek, & Fiser, 2013). Children with TS and age- 

and gender-matched typically developing controls performed the cued ASRT task in three 

sessions. To investigate the short-term consolidation of serial-order and probability-based 

information, the first two sessions took place on the same day with a 5-hour offline period 

between them. To test the one-year consolidation of the two regularities, the third session 

was administered following a one-year offline period. Hence, this explorative study aims 

to examine both the short-term and the long-term consolidation processes in children with 

TS. 

2. Material and methods 

2.1. Participants 

Twenty children diagnosed with TS between the ages of 10 and 15 participated in 

our study. They were recruited through a child and adolescent psychiatry hospital in 

Budapest, Hungary. They had been diagnosed with TS based on the DSM-V criteria 

(APA, 2013). Diagnoses were made by a team of child psychiatrist, clinical psychologist 
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and special education teacher after a one-week-long observation in the hospital. One 

participant had to be excluded from the analyses as they consistently showed extremely 

low average accuracy on the regularity extraction task (more than 3 times the interquartile 

range from the quartiles; Tukey, 1977). Therefore, the final TS sample consisted of 19 

children (16 boys and three girls). Demographic and clinical data of the TS participants 

are reported in Table 3.1. Three children had comorbid attention deficit hyperactivity 

disorder (ADHD) and one child had comorbid ADHD and obsessive-compulsive disorder 

(OCD). We did not exclude these participants from the analyses as ADHD and OCD are 

highly common in TS (Robertson et al., 2017). Participants did not have any other 

psychiatric or neurodevelopmental disorders. Three children were taking medication 

during either time of testing: one child was taking atomoxetine during the first testing, 

and two children were taking atomoxetine during the second testing. A subgroup of the 

TS children had been examined in the study of Tóth-Fáber, Tárnok, et al. (2021) (the 

overlap between the two samples is 81%), however, a new control group had been 

recruited due to difficulties in assessing the original control group one year later. 

Seventy-eight typically developing (TD) children were recruited from local 

schools (note that the analyses on this sample had been reported in Tóth-Fáber, Janacsek, 

et al., 2021). From this group, we matched 19 children one-to-one to the TS participants 

based on age and gender (16 boys and three girls). The pairs had an age gap maximum of 

six months and were in the same school grade. None of the matched controls had any 

psychiatric, neurological, or neurodevelopmental disorders based on parental reports. All 

participants had normal or corrected-to-normal vision. Demographic data of the TD 

participants are reported in Table 3.1. 

Caregivers of all participants completed a parental questionnaire regarding 

socioeconomic status (SES). SES was determined by the number of years the caregivers 

spent in formal education and it is reported in Table 3.1. Caregivers’ average formal 

education was calculated based on both parents’ education. In case of one participant in 

the TS group and three participants in the TD group, we only had information about one 

caregiver. In the TS group, data of two participants are missing.  

Caregivers of all participants provided informed written consent, and children 

assented to participate in the study before enrollment. The study was approved by the 

research ethics committee of Eötvös Loránd University, Budapest, Hungary, and was 

conducted in accordance with the Declaration of Helsinki. 
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Table 3.1. Demographic and clinical data of the participants. 

 

 Group 

 TS (n = 19) TD (n = 19) 

 M SD M SD 

Age on the first testing day 
11.95 

years 
1.27 years 

11.79 

years 
1.48 years 

School grade on the first 

testing day 
5.68 1.29 5.95 1.47 

Caregivers’ average formal 

education 

16.24 

years 
2.85 years 

16.45 

years 
3.08 years 

YGTSS total score on the 

first testing day 
18.21 8.61 – – 

YGTSS total score on the 

second testing day 
17.58 9.35 – – 

Note. YGTSS = Yale Global Tic Severity Scale.  

2.2. Tasks 

2.2.1. Alternating Serial Reaction Time (ASRT) task 

 The cued version of the Alternating Serial Reaction Time (ASRT) task (Howard, 

& Howard, 1997; Nemeth, Janacsek, & Fiser, 2013) was employed to measure the 

extraction of probability-based and serial-order regularities. The ASRT task has adequate 

test-retest reliability on neurotypical adult population (Stark-Inbar, Raza, Taylor, & Ivry, 

2016). In this task, participants see four equally spaced empty circles which are 

horizontally arranged. A stimulus (either a dog’s head or a penguin) occurs in one of the 

empty circles (Fig. 3.1A). Participants were instructed to press the corresponding key (Z, 

C, B, or M) on a QWERTY keyboard as accurately and as fast as they could. The 

response-to-stimulus interval was set to 120 ms. 

In the task, pattern and random stimuli appeared in an alternating fashion. Pattern 

stimuli appeared following a predetermined sequence, whereas random stimuli could 

appear in one of the possible locations (i.e., empty circles). The stimuli were presented in 

blocks with 85 trials in each block. A block started with five random trials for practice, 

followed by an eight-element alternating sequence presented ten times. The alternating 

sequence consisted of pattern and random trials (e.g., 1-r-2-r-4-r-3-r, where numbers 
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indicate one of the four circles on the screen and ‘r’ indicates a randomly selected circle 

out of the four possible ones). In the cued ASRT task, participants are informed about the 

presence of the sequence, and their attention is drawn to the alternating sequence by 

marking the pattern and random trials with different visual stimuli. In our study, a picture 

of a dog denotes pattern trials, and a picture of a penguin represents random trials. 

Participants were not informed about the exact sequence, but they were instructed to find 

the pattern defined by the dogs’ appearance to improve their performance. For each 

participant, one of the six different sequence permutations was selected in a pseudo-

random fashion, and the presence of the permutations was counterbalanced across 

participants and groups. For a given participant, the sequence permutation was the same 

across the epochs and the sessions. Note that the permutations can start at any location 

(e.g., 1-r-2-r-3-r-4-r and 2-r-3-r-4-r-1-r are identical sequence permutations). 

Due to the alternating sequence (i.e., pattern and random elements occurring in an 

alternating fashion), some runs of three consecutive trials (referred to as triplets) were 

more probable than others. For example, if the sequence is 1-r-2-r-4-r-3-r, triplets such as 

1-X-2, 2-X-4, 4-X-3, 3-X-1 (where X represents the middle element of the triplet) occur 

with a higher probability as their first and third elements could have been either pattern 

or random. This means that for example 4-X-3 can appear both as 4-2-3 (pattern – random 

– pattern) where the first and last elements are part of the predetermined sequence and as 

4-2-3 (random – pattern – random) where the first and last elements are random, and the 

middle element is part of the predetermined sequence. However, triplets such as 3-X-2 or 

4-X-2 were less probable as their first and third elements could have been only random 

(that is, random – pattern – random structure). More probable triplet types are referred to 

as “high-probability” triplets, while the less probable ones are labeled as “low-

probability” triplets (Howard, & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013). Each 

trial was categorized as the last element of either a high-probability or a low-probability 

triplet in a sliding window manner (i.e., one trial was the last element of a triplet, but it 

was also the middle and the first element of the two consecutive triplets, respectively). 

Another crucial feature of the trials is whether they belong to pattern or random elements 

(i.e., marked by a picture of a dog or a penguin). There are 64 unique triplets in the task, 

including all pattern-ending (50%) and random ending (50%) triplets. Sixteen of these 

unique triplets are high-probability and 48 triplets are low-probability. As high-

probability triplets can occur as pattern-ending triplets (50% of all trials) and by ¼ chance 

as random-ending triplets (12.5% of all trials), these triplets constitute 62.5% of all trials 
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(Fig. 3.1C). Low-probability triplets constitute 37.5% of all trials. On the level of unique 

triplets, high-probability triplets are five times more probable than low-probability triplets 

(4% [62.5% / 16] vs. 0.8% [37.5% / 48]). In sum, three trial types could be differentiated: 

(1) trials that belonged to the predefined sequence and appeared as the last element of a 

high-probability triplet called pattern trials; (2) random elements that belong to a high-

probability triplet labeled as random high trials; and (3) random elements that are the last 

element of a low-probability triplet called random low trials (Fig. 3.1B and 3.1C). 

In the cued ASRT task, the acquisition of probability-based and serial-order 

regularities, also referred to as statistical and sequence learning, respectively, can be 

measured simultaneously (Nemeth, Janacsek, & Fiser, 2013). Learning of probability-

based regularities was measured by the difference in reaction times (RTs) between 

random high and random low trials, greater learning was defined by faster RTs on random 

high than on random low trials. As both trials were random, they shared the same 

sequence properties but differed in statistical properties as they corresponded to the last 

element of a high-probability or a low-probability triplet, respectively. Learning of serial-

order regularities was quantified by the difference in RTs between pattern and random 

high trials, greater learning was determined by faster RTs on pattern than on random high 

trials. The two trial types shared the statistical properties as they both were the last 

element of a high-probability triplet, however, they differed in sequence properties as 

pattern trials belonged to the predefined sequence (Fig. 3.1C).  

At the beginning of the ASRT task, participants were instructed to discover the 

pattern of the dogs’ appearance. At the end of each block, awareness of the serial-order 

structure was assessed. Participants were asked to type the order of the dogs using the 

corresponding keys. The post-block sequence report lasted until 12 consecutive 

responses, which ideally was the 4-element sequence three times. The post-block 

sequence reports after the last five blocks of the Learning Phase (see Procedure) were 

used to measure awareness of the sequence. We calculated how many out of the 12 

consecutive responses were correct after each block; hence, we created a percentile 

variable. The mean of these five percentile variables was calculated for each participant, 

and we termed this variable as explicit knowledge of the sequence structure. 

2.2.2. Yale Global Tic Severity Scale (YGTSS) 

 Tic severity was assessed by a widely used and conventional measurement, 

namely the Yale Global Tic Severity Scale (Leckman et al., 1989). YGTSS is a semi-
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structured interview, which rates the number, frequency, complexity, intensity, and 

interference of motor and vocal tics separately on a scale of zero to five. The Total Score 

reported here contains the motor and vocal tic scores with a maximum score of 50. Tic 

severity was assessed two times: on the first testing day and one year later. Tic severity 

scores represent values from the week prior to the experiment. 

2.3. Procedure 

The study consisted of three sessions (Fig. 3.1D). The first two sessions took place 

on the same day with a 5-hour-long offline period between them. Children completed the 

learning session at the beginning of a school day and returned after their lunch break (that 

is, five hours later). The third session was administered ca. one year later (Mdelay = 53.78 

weeks, SDdelay = 3.11 weeks, between 47.95 and 60.57 weeks). Participants were assessed 

on the ASRT task in all three sessions. The ASRT task was presented in blocks. During 

the statistical analyses, blocks were collapsed into epochs, with each epoch containing 

five blocks.  The Learning Phase consisted of 20 blocks (i.e., four epochs), the Testing 

Phase was composed of 10 blocks (i.e., two epochs) and the Retesting Phase again 

contained 20 blocks (i.e., four epochs). After the first testing day, participants were not 

informed that the ASRT task would be administered again one year later. 
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Figure 3.1. The cued Alternating Serial Reaction Time (ASRT) task and experimental 

procedure. (A) Pattern and random trials were presented in an alternating fashion. Pattern trials 

were represented by a dog’s head and random trials were presented by a penguin. (B) An example 

of the sequence structure. In the example sequence, numbers mark pattern trials and ‘r’ marks a 

randomly selected location out of the four possible locations. The alternating presentation of trials 

makes some runs of three consecutive trials (called triplets) more probable than others, labeled as 

high-probability and low-probability triplets, respectively. High-probability triplets can end either 

with a pattern or a random trial, whereas low-probability triplets always end with a random trial. 

Therefore, we can differentiate pattern triplets which are always of high probability (orange 

shading in panel B and orange font in panel C), random high-probability triplets (blue shading in 

panel B and blue font in panel C), and random low-probability triplets (green shading in panel B 

and green font in panel C). (C) Quantifying the underlying learning processes in the task. Learning 

of probability-based regularities is quantified by contrasting the RTs on the random high and 

random low trials (blue vs. green, the right column of the table). Learning of serial-order 

regularities is calculated by contrasting the RTs on the pattern and random high trials (orange vs. 

blue, the top row of the table). (D) The design of the experiment. The experiment consisted of 

three sessions. The Learning Phase and Testing Phase were administered on the same day with a 

5-hour offline period between them. The Learning Phase was composed of four epochs (one epoch 

contained 5 blocks, and each block consisted of 85 stimuli) and the Testing Phase was composed 

of two epochs. The four-epoch-long Retesting Phase was administered ca. one year later. Figure 

3.1A, 3.1B and 3.1C are adapted from Nemeth, Janacsek, and Fiser (2013) and Zavecz et al. 

(2020), Figure 3.1D is adapted from Kóbor et al. (2017). 
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2.4. Statistical analyses 

Statistical analyses were carried out by SPSS version 25.0 software and by JASP 

0.9.2.0. software. We followed protocols outlined in previous studies (e.g., Kóbor et al., 

2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019). First, we collapsed the blocks 

into epochs of five blocks to facilitate data processing. The first epoch contained blocks 

1-5, the second epoch contained blocks 6-10, and so forth. Hence, the Learning Phase 

consisted of four epochs, the Testing Phase consisted of two epochs and the Retesting 

Phase consisted of four epochs. Epochs are referred to consecutively (from 1 to 10). 

Each trial was defined as the last element of a pattern, random high or random low 

triplet (Howard, & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013; also see the task’s 

description above). We calculated the median RT for correct responses separately for the 

three trial types, for each participant and each epoch. Based on prior studies, we excluded 

two types of low-probability triplets: repetitions of a single element (e.g., 111, 222) and 

trills (i.e., triplet starting with and ending with the same element, e.g., 121, 242) as 

individuals often show pre-existing tendencies towards them (Howard, Howard, Japikse, 

DiYanni, et al., 2004).  

Based on the three trial types, learning of probability-based and serial-order 

regularities can be quantified (Nemeth, Janacsek, & Fiser, 2013). Learning of probability-

based regularities is defined as the difference in RT between random high and random 

low trials (RT for random low trials minus RT for random high trials). Learning of serial-

order regularities was quantified as the RT difference between pattern and random high 

trials (RT for random high trials minus RT for pattern trials). Hence, higher scores 

indicate better learning/memory of probability-based or serial-order information. In 

conjunction with the learning and memory scores, we also calculated an offline change 

score separately for knowledge of probability-based and serial-order regularities. The 

short-term offline change score was calculated by subtracting the memory score in Epoch 

4 from the memory score in Epoch 5, therefore, it shows the change over the 5-hour 

offline period. The long-term offline change score was calculated by subtracting the 

memory score in Epoch 6 from the memory score in Epoch 7, therefore, it shows the 

change over the one-year offline period. In both cases, negative scores show forgetting 

and positive scores indicate offline learning. To assess learning and the retention of 

knowledge, repeated-measures ANOVAs and paired-samples t-tests were conducted on 

RT data, separately for probability-based and serial-order based regularities. The 

Greenhouse-Geisser epsilon (ε) correction was used when necessary. Original df values 
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and corrected p values (if applicable) are reported with partial eta-squared (η2
p) as a 

measure of effect size. For correlation analyses, in case of normal distribution, Pearson’s 

correlation was employed. When the assumption of normal distribution was violated, 

Spearman correlation was used for frequentist statistics and Kendall’s Tau-b correlation 

was used for Bayesian statistics.  

Concurrently with the frequentist analyses, Bayesian paired samples t-tests and 

independent samples t-tests were performed, and Bayes Factors (BF) were calculated for 

the relevant comparisons. The BF is an appropriate tool to conclude whether the data 

support the null (H0) or alternative (H1) hypothesis (Wagenmakers, Wetzels, Borsboom, 

& van der Maas, 2011). BFs can be particularly relevant in memory consolidation studies 

where retention is indicated by evidence supporting the H0 rather than H1 (Dienes, 2014), 

as H0 means that the memory scores before and after the offline period are similar and H1 

means that the memory scores differ. Here, we report BF01 values.  According to 

Wagenmakers et al. (2011), BF01 values between 1 and 3 suggest anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 mean 

strong evidence for H0. Values between 1 and 1/3 indicate anecdotal evidence, values 

between 1/3 and 1/10 indicate substantial evidence, and values below 1/10 suggest strong 

evidence for H1. Values around 1 do not support either hypothesis. 

3. Results 

3.1. Prerequisite of memory consolidation 

Significant learning preceding the offline period is a prerequisite of assessing 

memory consolidation (Kóbor et al., 2017; Robertson, 2009). Thus, we conducted mixed-

design ANOVAs on the Learning Phase to test whether significant learning of 

probability-based and/or serial-order regularities occurred in both the TS and TD groups. 

ANOVAs were conducted on RT data, separately for the two types of regularities. 

 Learning of probability-based regularities in the Learning Phase were tested 

with a mixed-design ANOVA on RT with GROUP (TS vs TD) as a between-subjects 

factor and PROBABILITY (random high vs random low) and EPOCH (1-4) as within-

subject factors. Average RTs (i.e., irrespective of trial types) were similar in the control 

and TS groups (main effect of GROUP, F(1, 36) = 0.006, p = .94). RTs gradually 

decreased as the task progressed, irrespective of trial types (main effect of EPOCH, F(3, 

108) = 20.62, p < .001, η2
p = .36). The ANOVA revealed significant learning of 



57 
 

probability-based information (main effect of PROBABILITY, F(1, 36) = 83.48, p < .001, 

η2
p = .70), participants showed faster responses to random high (M = 441.20 ms) than to 

random low trials (M = 463.52 ms). The TS and TD groups did not differ from each other 

either in overall learning (GROUP × PROBABILITY interaction, F(1, 36) = 0.02, p = 

.90; Fig. 3.2) or in the trajectory of learning (GROUP × PROBABILITY × EPOCH 

interaction, F(3, 108) = 1.06, p = .36). Other interactions were also not significant (all ps 

> .13). Successful learning in both groups ensure that the analyses of short-term and long-

term consolidation of probability-based regularities across groups are justified. 

 

 

Figure 3.2. Temporal dynamics of learning of probability-based regularities across epochs 

and sessions in the (A) TD group and (B) TS group. Dashed lines represent the TD group, 

continuous lines represent the TS group. RT values as a function of the epoch (1-10) and trial 

types (random high vs. random low) are presented. Blue lines with triangle symbols indicate RTs 

on the random high trials, green lines with square symbols indicate RTs on the random low trials. 

Learning is quantified by the gap between blue and green lines; the greater gap between the lines 

represents better learning. Error bars denote standard error of mean. 

 Learning of serial-order regularities during the Learning Phase was tested 

similarly, with a mixed-design ANOVA on RT with GROUP (TS vs TD) as a between-

subjects factor and ORDER (pattern vs random high) and EPOCH (1-4) as within-subject 

factors. Average RTs (i.e., irrespective of trials types) did not differ in the control and TS 

groups (main effect of GROUP, F(1, 36) = 0.04, p = .85). RTs gradually decreased as the 

task progressed, irrespective of trial types (main effect of EPOCH, F(3, 108) = 28.55, p 

< .001, η2
p = .44). The ANOVA showed overall significant learning (main effect of 

ORDER, F(1, 36) = 6.59, p = .015, η2
p = .16), participants showed faster RTs to pattern 

(M = 426.47 ms) compared to random high trials (M = 441.20 ms). Importantly, however, 

the groups differed in the trajectory of learning (indicated by the GROUP × ORDER × 
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EPOCH interaction, F(1, 36) = 5.03, p = .01, η2
p = .12, Fig. 3.3). Other interactions were 

not significant (all ps > .27). To further examine the three-way interaction, we 

investigated the learning of serial-order regularities separately in the TS and TD groups. 

Hence, we conducted an ANOVA on RT with ORDER (pattern vs random high) and 

EPOCH (1-4) separately for the two groups. In the TS group, the ANOVA did not reveal 

learning (non-significant main effect of ORDER, F(1, 18) = 3.58, p = .08; non-significant 

ORDER × EPOCH interaction, F(3, 54) = 2.25, p = .09). The TD group did not show 

significant learning either (non-significant main effect of ORDER, F(1, 18) = 3.99, p = 

.06; non-significant ORDER × EPOCH interaction, F(3, 54) = 3.35, p = .07). Importantly, 

these results suggest that the groups did not successfully acquire the serial-order 

information during the Learning Phase, therefore, the prerequisite of assessing memory 

consolidation was not fulfilled. The lack of significant learning calls into question the 

applicability of retention analyses concerning serial-order regularities. Hence, from this 

point on, we focus on consolidation of probability-based information and report the 

analysis on the consolidation of serial-order regularities in the Supplementary Materials. 

 

Figure 3.3. Temporal dynamics of learning of serial-order regularities across epochs and 

sessions in the (A) TD group and (B) TS group. Dashed lines represent the TD group, 

continuous lines represent the TS group. RT values as a function of the epoch (1-10) and trial 

types (pattern vs. random high) are presented. Orange lines with circle symbols indicate RTs on 

the pattern trials, blue lines with triangle symbols indicate RTs on the random high trials. Learning 

is quantified by the gap between orange and blue lines; the greater gap between the lines 

represents better learning. Error bars denote standard error of mean. 

Regarding serial-order learning, we also tested the explicit knowledge of the 

sequence measured by the post-block sequence reports and whether it is different in the 

TS and control groups. Due to the violation of normal distribution, non-parametric Mann-
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Whitney U test was used to contrast explicit knowledge in the TS and control groups. The 

two groups showed similar explicit knowledge (U = 151.5, z = -0.92, p = .36; Mcontrol = 

79.23 %, MTS = 88.42 %). 

3.2. Short-term (five-hour) consolidation of knowledge of probability-based regularities  

 To examine the five-hour consolidation of knowledge of probability-based 

regularities knowledge, we conducted a mixed-design ANOVA on RT with GROUP (TS 

vs TD) as between-subjects factor and PROBABILITY (random high vs random low) 

and EPOCH (4 vs 5) as within-subject factors. 

Overall, irrespective of epochs and group, participants were faster on random high 

(M = 415.70 ms) than on random low trials (M = 438.53 ms) (main effect of 

PROBABILITY, F(1, 36) = 66.37, p < .001, η2
p = .65). The ANOVA revealed, that over 

groups, the memory scores did not change in the five-hour offline period (non-significant 

PROBABILITY × EPOCH interaction, F(1, 36) = 0.25, p = .62, BF01 = 5.08), with similar 

memory scores in the 4th (M = 21.80 ms) and in the 5th (M = 23.86 ms) epochs. 

Importantly, the groups did not differ in retention (non-significant GROUP × 

PROBABILITY × EPOCH interaction, F(1, 36) = 0.14, p = .71, Fig. 3.4; Bayesian 

independent samples t-tests conducted on the short-term offline change score BF01 = 

3.004, short-term offline change scores: MTS = 3.58 ms, MTD = 0.53 ms). Other main 

effects or interactions were also not significant (all ps > .15). Furthermore, we compared 

the memory scores in Epoch 4 and Epoch 5 separately in the two groups with paired-

samples t-tests. Both groups showed retention of probability-based regularities (TD 

group: t(18) = -0.08, p = .94, BF01 = 4.20, d = -0.02; TS group: t(18) = -0.70, p = .49, 

BF01 = 3.39, d = -0.16, see also Fig. 3.4). 
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Figure 3.4. Five-hour retention of knowledge of probability-based regularities in the TD and 

TS groups. Memory scores were measured by RT values for the last epoch of the Learning Phase 

(Epoch 4) and the first epoch of the Testing Phase (Epoch 5). Error bars denote the standard error 

of mean. 

3.3. Long-term (one-year) consolidation of knowledge of probability-based regularities 

To investigate the one-year consolidation of knowledge of probability-based 

regularities, we run a mixed-design ANOVA on RT with GROUP (TS vs TD) as between-

subjects factor and PROBABILITY (random high vs random low) and EPOCH (6 vs 7) 

as within-subject factors. Overall, irrespective of epochs and group, participants showed 

faster RTs on random high (M = 412.08 ms) than on random low trials (M = 436.68 ms) 

(main effect of PROBABILITY, F(1, 36) = 87.75, p < .001, η2
p = .71). The ANOVA 

revealed retained memory of probability-based regularities after the one-year delay (non-

significant PROBABILITY × EPOCH interaction, F(1, 36) = 0.496, p = .49, BF01 = 4.53), 

memory scores were similar in the 6th (M = 26.85 ms) and in the 7th (M = 22.34 ms) 

epochs. Importantly, memory scores were similar in the TS and TD groups (non-

significant GROUP × PROBABILITY × EPOCH interaction, F(1, 36) = 0.64, p = .43, 

Fig. 3.5; Bayesian independent samples t-tests conducted on the long-term offline change 

score BF01 = 2.47, long-term offline change scores: MTS = -9.63 ms, MTD = 0.61 ms). 

Other main effects and interactions were also not significant (all ps > .20). Furthermore, 

we compared the memory scores in Epoch 6 and Epoch 7 separately in the two groups 
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with paired-samples t-tests. Both groups showed retention of probability-based 

regularities (TD group: t(18) = -0.08, p = .93, BF01 = 4.20, d = -0.02; TS group: t(18) = 

0.91, p = .37, BF01 = 2.92, d = 0.21, see also Fig. 3.5). 

 

 

Figure 3.5. One-year retention of knowledge of probability-based regularities in the TD and 

TS groups. Memory scores were measured by RT values for the last epoch of the Testing Phase 

(Epoch 6) and the first epoch of the Retesting Phase (Epoch 7). Error bars denote the standard 

error of mean. 

3.4. The relation of tic severity and consolidation of knowledge of probability-based 

regularities 

 In the TS group, we measured the severity of present tics on the first testing day 

as well as one year later, on the second testing day. This way, we could assess the change 

in tic severity over the one-year offline period. We subtracted the total score of tic severity 

on the second testing day (i.e., after the one-year offline period) from the total score of 

tic severity on the first testing day. Therefore, positive scores mean positive change over 

the one-year offline period, and negative scores mean that tics became more severe. The 

mean total scores on the first and second testing days are reported in Table 3.1. The mean 

of the change in tic severity was 0.63 (SD = 9.55). 

 To evaluate the relationship between tic severity and consolidation of knowledge 

of probability-based regularities, we correlated short- and long-term offline change scores 
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and tic severity on the first testing day. Severity of the present tics on the first testing day 

did not correlate either with short-term offline change score (rs(19) = -.10, p = .68, BF01 

= 3.22), or with long-term offline change score (rs(19) = -.07, p = .77, BF01 = 3.32). 

Moreover, we correlated the long-term offline change score of knowledge of probability-

based regularities with the change in tic severity over the one-year offline period and 

found no correlation between the variables (rs(19) = -.19, p = .43, BF01 = 2.57). 

4. Discussion 

The present study aimed to investigate the short-term (five-hour) and long-term 

(one-year) consolidation of two aspects of procedural memory, namely probability-based 

and serial-order regularities, in children with Tourette syndrome and neurotypical peers. 

We employed the cued ASRT task, which measures the two aspects simultaneously. We 

have shown retained knowledge of probability-based information: participants acquired 

the probability-based regularities, then successfully retained them both after the five-hour 

and one-year offline period. Children with TS and matched typically developing controls 

showed comparable retention of knowledge of probability-based regularities. These 

results were supported by Bayesian statistics as well, strengthening the evidence for 

successful five-hour and one-year retention in both groups. Concerning serial-order 

regularities, the prerequisite of assessing memory consolidation was not fulfilled as the 

groups did not acquire the serial-order information. Hence, consolidation of serial-order 

information could not be reliably tested here. Nevertheless, we presented these results in 

the Supplementary Material showing successful retention in both groups.  

Previous studies already demonstrated retained memory representation of 

probability-based information in neurotypical adults following a one-year offline period 

using the ASRT task (Kóbor et al., 2017; Romano et al., 2010). Importantly, evidence for 

successful retention was presented in neurotypical children as well in the study of Tóth-

Fáber, Janacsek, et al. (2021). Altogether, these studies suggest that one-year 

consolidation of probability-based regularities seems to be comparable between children 

and adults, supporting the age invariance model in the consolidation of such regularities. 

Our results corroborate these prior findings and also demonstrates intact one-year 

consolidation of probability-based information in children with TS, suggesting that 

procedural memory is robust in this neurodevelopmental disorder. 
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The intact consolidation of knowledge of probability-based regularities in TS is 

in line with the results of prior studies.  Takács et al. (2018) employed the uncued version 

of the ASRT task and probed learning and consolidation of probability-based regularities 

in TS. Children with TS showed superior learning, however, following a 16-hour offline 

period, they showed greater forgetting than their neurotypical peers. Importantly, group 

differences in learning itself can lead to group differences in consolidation. When 

controlling for learning differences, the TS and control group showed similar changes in 

knowledge of probability-based regularities overnight, suggesting that consolidation is 

comparable between the groups. The present study replicates and goes beyond the results 

of Takács et al. (2018): (1) our results also showed comparable short-term (five-hour) 

consolidation, and (2) we showed intact one-year retention of knowledge of probability-

based regularities in TS. 

Consolidation of procedural memory representations in TS has also been 

indirectly examined with language-based tasks that measure the access to previously 

established procedural information. Walenski et al. (2007) showed faster production of 

rule-governed past tenses and faster naming of manipulated objects in TS, whereas 

production of irregular past tenses and naming non-manipulated objects were similar 

between the TS and typically developing groups. The former processes rely on procedural 

memory and the latter processes are related to declarative memory (Ullman, 2004). In 

conjunction with these results, Dye et al. (2016) found evidence for enhanced access to 

established procedural information in TS in a non-word repetition task: children with TS 

could repeat non-words in a faster manner than typically developing controls. In sum, the 

results of both Walenski et al. (2007) and Dye et al. (2016) suggested enhanced access to 

previously consolidated procedural information in TS, whereas our study showed intact 

procedural memory consolidation. This discrepancy might be explained by the 

differences between the employed tasks. Although processing of probability-based 

regularities is important in language (e.g., Misyak et al., 2010; Saffran et al., 1996; 

Thompson & Newport, 2007), the ASRT task employed in the current study and the 

language-based tasks used in the prior studies (Dye et al., 2016; Walenski et al., 2007) 

show some differences. Both language-based studies used stimuli or measured processes 

participants have a prior knowledge of: Walenski et al. (2007) used words as stimuli and 

Dye et al. (2016) measured rule-governed (de)composition of words. In contrast, 

participants had no prior knowledge of the stimuli and the underlying structure presented 

in the ASRT task. Moreover, participants have a repeated exposure to the stimuli in the 
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language-based tasks besides the experimental sessions, hence, the stimuli are retained, 

and therefore the memory representations are reinforced regularly, whereas participants 

met with the ASRT task solely in the experimental sessions. Speculatively, it is possible 

that regular practice in the offline period is needed for the enhancement seen in the 

language-based studies (Dye et al., 2016; Walenski et al., 2007). Further studies are 

warranted to test this possibility by investigating language-related processes and 

extraction of regularities during the lifespan of TS patients. 

Long-term stability of procedural memories has potential clinical and educational 

implications. Procedural memory underlies the acquisition of cognitive, motor and social 

skills, such as language learning or sports (Frith & Frith, 2012; Kaufman et al., 2010) and 

is related to habits as well (Goodman et al., 2014; Takacs et al., 2021). Importantly, a 

one-year long offline period that has been used in the current study can resemble real-

word observations. Namely, learning a new skill or developing a habit happens over a 

longer stretch of time than a timescale of a lab visit. Our results suggest that children with 

TS have stable memory representations of procedural knowledge without additional 

practice during a long time interval and their performance is comparable with TD 

children. These robust memory representations of procedural knowledge could manifest 

in everyday settings in the following way: children with TS might be better in learning a 

new skill (as suggested by prior studies on procedural learning, Takács et al., 2018; Tóth-

Fáber, Tárnok, et al., 2021) and they can be also successful in maintaining and 

remembering those skills, as the current study suggests. As for clinical settings, 

behavioral therapies are first-line treatments for reducing tics. This method can 

potentially benefit from a dovetailed knowledge of how stable the acquired skills are in 

TS. For instance, in habit reversal training (Piacentini & Chang, 2005), when feeling the 

urge to tic, patients learn to perform an adequate, antagonist action that is physically 

incompatible with the tic. Over time and practice, when feeling the urge, patients will 

carry out the adequate action instead of the tic, hence, the urge – tic association will be 

replaced by the urge – adequate action association. It is conceivable that the new 

association results in a stable memory representation just as tics and procedural 

knowledge. Relatedly, Petruo et al. (2020) examined the effect of behavioral therapy on 

procedural associations and inhibitory control in adolescents with TS and typically 

developing peers. They employed the Comprehensive Behavioral Intervention for Tics 

(CBIT, Piacentini et al., 2010), which is a complex behavioral therapy consisting of 

psychoeducation, relaxation and habit reversal training. Procedural associations and 
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inhibitory control were tested preceding and following the intervention. Participants with 

TS showed worse inhibitory control than TD peers during the pretest, however, 

performance was comparable between the groups during the posttest. These results 

suggest that CBIT reduced the rigid procedural associations in TS, resulting in successful 

inhibitory control. The authors concluded that, in conjunction with reducing tics, 

CBIT/HRT might normalize alterations in higher level cognitive function (Petruo et al., 

2020). Furthermore, one intriguing but so far neglected area which has great clinical 

implications is the rewiring of memory representations (Szegedi-Hallgató et al., 2017) in 

TS. Previous studies have suggested that memory representations of procedural 

knowledge might be overstable in TS (Shephard et al., 2019; Takacs et al., 2021), which 

would result in higher resistance to interference. This would lead to more difficulties in 

rewiring/overwriting established associations. Future studies should test how well 

patients with TS can overwrite associations and how it relates to behavioral therapies. In 

sum, it is important to note that the abovementioned clinical implications are tentative 

and future studies are necessary to investigate the relationship between procedural 

functions and behavioral therapies in TS. 

The present study is not without limitations. First, the sample size in our study can 

be considered to be small. At the same time, this sample size corresponds to previous 

studies that investigated procedural functions in this rare disorder (e.g., Dye et al., 2016; 

Shephard et al., 2019; Takács et al., 2018; Takács et al., 2017). Second, TS participants 

in our study are characterized with mild to moderate tic severity and possibly represent 

the lower end of tic severity dimension as indicated by the YGTSS. In our study, 

individual differences in procedural memory consolidation did not correlate with tic 

severity or changes in tic severity over the one-year offline period in the TS group. 

Although YGTSS is a well-established clinical measure of tic severity, it would be 

beneficial to employ additional measures of tic severity in future studies. One potential 

candidate is the Modified Rush Videotape Rating Scale (Goetz, Pappert, Louis, Raman, 

& Leurgans, 1999), which is an objective clinical measure of present tic severity. Vocal 

and motor tics are rated based on their frequency, severity, and distribution. Kleimaker et 

al. (2020) focused on stimulus-response associations in TS adults and employed both the 

YGTSS and the Modified Rush Videotape Rating Scale. They revealed stronger stimulus-

response binding in TS adults, which resulted in difficulties in unbinding and rebinding 

established associations. Individual differences in stimulus-response binding did not 

show correlation with YGTSS scores, however, they correlated with motor tic frequency, 
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that is, with the number of motor tics per minute as measured by the Modified Rush 

Videotape Rating Scale. Hence, it is possible that finer markers of tics might be related 

to procedural memory consolidation as well. Nonetheless, our results are limited to a 

specific TS population and further studies should investigate whether procedural memory 

consolidation is intact in children with severe tic symptoms as well. 

Another intriguing future direction could be a detailed characterization of the 

temporal dynamics of consolidation. The present study does not provide information 

about exactly when the consolidation of the acquired information happens. Quentin et al. 

(2021) showed that learning of probability-based regularities occurs during the online 

periods, and no further gain is acquired during the offline periods. In contrast, memories 

of serial-order regularities are formed during the offline periods of the ASRT task. Further 

studies should explore in detail the temporal dynamics of learning probability-based and 

serial-order regularities in TS. 

5. Conclusion 

The goal of the present study was to investigate the consolidation of procedural memory 

in TS. The representation of probability-based regularities remained stable over both a 

short-term (five-hour) and long-term (one-year) offline period in children with TS and 

typically developing controls. Both the TS and the control group successfully retained 

knowledge of probability-based information after the offline periods with comparable 

memory performance between the groups. In conclusion, procedural memory 

consolidation seems to be intact in TS even after a one-year offline period that did not 

include additional practice. This finding suggests that individuals with TS might be more 

proficient in skill acquisition as they are able to successfully maintain and retain the 

learned skills, even over a long period of time.  
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IV. Study 3: Statistical and sequence learning lead to persistent memory 

in children after a one-year offline period 

Publication: 

Tóth-Fáber, E., Janacsek, K. & Nemeth, D. (2021). Statistical and sequence learning 

lead to persistent memory in children after a one-year offline period. Scientific Reports, 

11, 12418. https://doi.org/10.1038/s41598-021-90560-5 

Abstract 

Extraction of environmental patterns underlies human learning throughout the lifespan 

and plays a crucial role not only in cognitive but also perceptual, motor, and social skills. 

At least two types of regularities contribute to acquiring skills: (1) statistical, probability-

based regularities, and (2) serial order-based regularities. Memory performance of 

probability-based and/or serial order-based regularities over short periods (from minutes 

to weeks) has been widely investigated across the lifespan. However, long-term (months 

or year-long) memory performance of such knowledge has received relatively less 

attention and has not been assessed in children yet. Here, we aimed to test the long-term 

memory performance of probability-based and serial order-based regularities over a one-

year offline period in neurotypical children between the age of 9 and 15. Participants 

performed a visuomotor four-choice reaction time task designed to measure the 

acquisition of probability-based and serial order-based regularities simultaneously. Short-

term consolidation effects were controlled by retesting their performance after a 5-hour 

delay. They were then retested on the same task one year later without any practice 

between the sessions. Participants successfully acquired both probability-based and serial 

order-based regularities and retained both types of knowledge over the one-year period. 

The successful retention was independent of age. Our study demonstrates that the 

representation of probability-based and serial order-based regularities remains stable over 

a long period of time. These findings offer indirect evidence for the developmental 

invariance model of skill consolidation.  

https://doi.org/10.1038/s41598-021-90560-5
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1. Introduction 

Detecting and extracting various kinds of regularities embedded in our 

environment is a fundamental component underlying human learning in all ages, enabling 

us to adapt to our surroundings and to predict future events (Conway, 2020; Frost, 

Armstrong, Siegelman, & Christiansen, 2015; Misyak et al., 2010; Saffran & Kirkham, 

2018). Extraction of regularities is argued to be the basis of several motor and cognitive 

skills, including language (Arciuli & Torkildsen, 2012; Conway, 2020; Kaufman et al., 

2010; Saffran et al., 1996; Siegelman, 2020; Ullman, 2004). The initially unstable 

representations of the detected and extracted regularities are converted into a more stable 

form via consolidation, allowing information to be preserved and retained later (Walker, 

2005). Ample studies investigated the consolidation of regularities and skills with a one-

minute, one-hour, four-hour, 12-hour, 24-hour or one-week delay (Arciuli & Simpson, 

2012; Fanuel et al., 2020; Meier & Cock, 2014; Nemeth & Janacsek, 2011; Nemeth, 

Janacsek, Londe, et al., 2010; Press, Casement, Pascual-Leone, & Robertson, 2005; 

Simor et al., 2019; Song et al., 2007b; Walker, Brakefield, Hobson, & Stickgold, 2003). 

Although everyday experiences suggest that the representation of the acquired regularities 

and skills is persistent even for a more extended period (months or years), it has been 

rarely tested empirically, especially from a developmental perspective. In the present 

study, we aim to investigate the long-term (one-year) consolidation of two types of 

regularities in neurotypical children. 

Behaviorally, consolidation is measured by contrasting memory performance at 

the end of the learning session with performance at the beginning of a subsequent testing 

session, without additional practice between the two sessions (i.e., during the offline 

periods). Consolidation can be expressed by successfully retained knowledge after the 

offline period (no forgetting, i.e., performance is similar in the learning and testing 

sessions) or by learning-dependent, delayed performance gains after the offline period, 

termed offline learning (i.e., performance is better in the testing session than in the 

learning session) (Robertson et al., 2004). The present study follows this well-established 

behavioral test protocol to assess long-term memory performance and implements a one-

year offline period between the sessions. 

The available information in our environment, which can be detected, extracted, 

and consolidated is diverse; thus, our brain has to process several information streams 

simultaneously during both learning and consolidation. Learning of regularities is not a 
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monolithic process. Previous empirical studies suggested that the acquisition of at least 

two types of regularities can be differentiated: (1) statistical, probability-based 

regularities, and (2) serial order-based regularities (Kóbor et al., 2018; Nemeth, Janacsek, 

& Fiser, 2013; Simor et al., 2019; Takacs et al., 2020). Therefore, it has been proposed 

that humans organize the regularities embedded in the environment in separate hypothesis 

spaces (Conway, 2020; Maheu et al., 2020); one such hypothesis space is based on 

probabilities, while another is based on deterministic rules (i.e., serial order-based 

regularities). While on the level of transitional probabilities, these learning processes may 

seem highly similar, where the former can be viewed as the acquisition of transitional 

probabilities that are less than one and the latter as the acquisition of transitional 

probabilities that equal one, differences between them have been shown both on the 

behavioral and neural levels, providing support for their distinction(Kóbor et al., 2018; 

Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019). Probability-based regularities are 

picked up rapidly, while learning of serial order-based information follows a more 

gradual trajectory (Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019); they also 

manifest differently on the level of event-related potentials (Kóbor et al., 2018; Takacs et 

al., 2020) and show different neural oscillations during consolidation (Simor et al., 2019; 

Zavecz et al., 2020). 

The consolidation of probability-based and/or serial order-based regularities has 

been studied previously. Retained knowledge has been found after one-hour, 12-hour, 24-

hour, or even 1-week offline period in healthy adults (Arciuli & Simpson, 2012; Meier & 

Cock, 2014; Nemeth & Janacsek, 2011; Nemeth, Janacsek, Londe, et al., 2010; Simor et 

al., 2019; Song et al., 2007b). Long-term consolidation has received less attention, with 

only a few studies investigating the effect of month- or year-long offline periods: Romano 

et al. (2010) and Kóbor et al. (2017) both showed persistent representation of regularities 

after a one-year offline period in healthy adults. However, both studies employed a task 

(Kóbor et al., 2017; Romano et al., 2010), which, although measures both probability-

based and serial order-based information, is not well-suited to dissect these regularities 

in the same time window. To the best of our knowledge, only two studies investigated the 

consolidation differences between probability-based and serial order-based regularities, 

but they administered a one-hour offline period only (Simor et al., 2019; Zavecz et al., 

2020). Both Simor et al. (2019) and Zavecz et al. (2020) found retained statistical and 

serial-order knowledge after the offline period. Altogether, prior studies typically 

incorporated only short-term (from minutes to week) offline periods in their design; 
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therefore, the long-term consolidation of probability-based and serial order-based 

information is not well understood yet. Here, we aimed to fill this gap by investigating 

the simultaneous consolidation of these regularities over a one-year period. 

The consolidation of probability-based or serial order-based information is even 

less understood in children. An ideal avenue to achieve a deeper understanding of 

cognitive processes and functions is to examine them from a developmental perspective 

(Karmiloff-Smith, 1994). Studies on typical and atypical development can pave the way 

towards grasping underlying processes of learning and memory consolidation. Learning 

of probability-based regularities might be age-variant with better performance in children 

up to the age of 12 (Janacsek et al., 2012; Juhasz et al., 2019; Nemeth, Janacsek, & Fiser, 

2013),  whereas learning of serial order-based regularities might be comparable in 

children and adults (Nemeth, Janacsek, & Fiser, 2013). Most of the studies examining the 

consolidation of these regularities in children either focused on solely probability-based 

(Fischer et al., 2007) or solely serial order-based regularities (Desmottes, Maillart, & 

Meulemans, 2017; Hedenius et al., 2013) or used paradigms that intermix them 

(Hedenius, Lum, & Bölte, 2020; Hedenius et al., 2011; Nemeth, Janacsek, Balogh, et al., 

2010; Takács et al., 2018). Retained information (i.e., no forgetting) has been found in 

neurotypical children following 11-hour (Fischer et al., 2007), 16-hour (Nemeth, 

Janacsek, Balogh, et al., 2010; Takács et al., 2018), 24-hour (Hedenius et al., 2013) and 

3-day (Hedenius et al., 2011) offline periods. Hedenius et al. (2020) showed offline 

learning after a 24-hour delay and Desmottes et al. (2017) found offline learning 

following 24-hour and one-week offline periods. To the best of our knowledge, the long-

term (one-year) consolidation of probability-based or serial order-based information has 

not yet been investigated in children. Age-variant learning of probability-based 

regularities and successful one-year retention in healthy adults (Kóbor et al., 2017; 

Romano et al., 2010) raises the question of whether long-term consolidation is successful 

in children as well. 

To sum up, in child population, the long-term (one-year) consolidation of 

probability-based and serial order-based information has not been assessed yet. In the 

present study, we used the cued version of the Alternating Serial Reaction Time task 

(Howard, & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013) which enables us to 

simultaneously measure these two regularities. In this framework, statistical learning 

refers to the acquisition of short-range, temporally distributed probability-based 

information between visual stimuli. Sequence learning refers to the acquisition of serial 
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order-based information, where participants are exposed to stimuli that repeatedly occur 

in the same deterministic order, incorporated with random stimuli (hence, creating an 

alternating sequence structure). Our study aims to examine one-year consolidation of 

probability-based and serial order-based regularities in children between the age of 9 and 

15 with a task designed to measure the acquisition of these regularities simultaneously. 

This particular age range was chosen in order to examine consolidation both in childhood 

and adolescence, hence, participants from pre-adolescence, early- and mid-adolescence 

were included. Based on the previous studies, we expect successful retention of both 

probability-based and serial order-based information following a one-year offline period. 

2. Methods 

2.1. Participants 

Seventy-eight children between the age of 9 and 15 participated in our study from 

local schools. Three participant had missing data on the ASRT task due to technical 

difficulties; three children’s caregiver reported psychiatric condition; one child did not 

have corrected-to-normal vision during one session of the assessments; and one children 

showed extremely low average accuracy according to Tukey (1977) criterion (more than 

3 times the interquartile range) consistently throughout the ASRT task. These eight 

participants were excluded from the analyses. The final sample consisted of 70 

participants (Mage = 11.99 years, SDage = 1.61 years; 37 boys, 33 girls).  

Participants performed in the normal range on standard neuropsychological tests 

(Wisconsin Card Sorting Task (Berg, 1948; Piper et al., 2015) [WCST, percentage of 

perseverative errors]: M = 14.12%, SD = 5.90%; Counting Span task (Case et al., 1982; 

Fekete et al., 2010): M = 3.17, SD = 0.78). Due to technical problems, data of three 

participants on the WCST and data of one participant on the WCST and Counting Span 

task is missing. Handedness was measured by the Edinburgh Handedness Inventory 

(Oldfield, 1971) (EHI). Due to a technical error, EHI of one participant is missing. The 

Laterality Quotient (LQ) of the sample varied between -100 and 100 (where -100 means 

compete left-handedness and 100 means complete right-handedness) with a mean of 

76.21 (SD = 36.50).  

Furthermore, caregivers of participants completed a parental questionnaire 

regarding socioeconomic status (SES) and health-related questions (i.e., whether the child 

has any neurological, psychiatric, or neurodevelopmental disorder). Caregivers of one 
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participant did not provide information about their socioeconomic status (SES), therefore, 

data of one participant is missing. SES was determined by how many years the caregivers 

spent in formal education. We calculated the caregivers’ average formal education based 

on both parents’ education. In case of five participants, we only had information about 

one caregiver. The range of formal education of caregivers was between 9.5 and 27 years, 

with a mean of 16.61 years, (SD = 3.85 years). Caregivers were also asked to fill in the 

Strength and Difficulties Questionnaire (Goodman, 1997) (SDQ) which measures 

hyperactivity, conduct problems, emotional problems, and difficulties in peer 

relationships. SDQ of six participants is missing. Total problem score measured in our 

sample was 7.94 (SD = 5.38), which is well in the normal range of typically developing 

children (Turi, Tóth, & Gervai, 2011). All participants in the final sample had normal or 

corrected-to-normal vision, and none of the children had any neurological, psychiatric, or 

neurodevelopmental disorders according to parental reports. 

Caregivers of all participants provided informed written consent, and children 

provided informed verbal consent to participate in the study before enrollment. The study 

was approved by the research ethics committee of Eötvös Loránd University, Budapest, 

Hungary (2018/239), and was conducted in accordance with the Declaration of Helsinki. 

2.2. Task 

The detection and extraction of probability-based and serial order-based 

regularities was measured by the cued version of the Alternating Serial Reaction Time 

(ASRT) task (Howard, & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013). In this task, 

four equally spaced, horizontally arranged empty circles were presented on the screen, 

and a stimulus (either a dog’s head or a penguin) appeared in one of the possible locations 

(i.e., in the empty circles) (Fig. 4.1A). The task was bimanual and participants were asked 

to press the corresponding key as accurately and as fast as they could using the index and 

middle fingers of both hands. After the response of the participant, the next target 

appeared 120 ms later.  

The presentation of the stimuli followed an eight-element alternating sequence 

within which pattern and random elements alternated with each other (e.g., 1-r-2-r-4-r-3-

r, where numbers indicate the locations from left to right and ‘r’ indicates a randomly 

selected location out of the four possible ones). In the cued ASRT task, pattern and 

random elements are marked by different visual stimuli, where pattern elements are 

denoted by the dog’s head, and random elements are indicated by the penguins. 
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Participants were informed about the presence of the sequence and about the fact that the 

appearance of dogs always follows a predetermined pattern, while penguins always 

appear in random order. They were not informed about the exact sequence; they were 

instructed to find the pattern of the dogs’ appearance to improve their performance. The 

alternating sequence makes six different sequence variations: 1-r-2-r-3-r-4-r, 1-r-2-r-4-r-

3-r, 1-r-3-r-2-r-4-r, 1-r-3-r-4-r-2-r, 1-r-4-r-2-r-3-r, and 1-r-4-r-3-r-2-r. These 

permutations can start at any location (e.g., 1-r-2-r-3-r-4-r and 2-r-3-r-4-r-1-r are identical 

sequence permutations). One of the permutations was selected for each participant in a 

counterbalanced fashion across participants. For a given participant, the permutation 

remained the same through all sessions. The stimuli were presented in blocks, each block 

consisting of 85 trials. Each block started with five random trials for practice, then one of 

the eight-element alternating sequence was presented ten times. 

In the task, three successive trials are referred to as triplets. Due to the alternating 

sequence in the task, some triplets are more probable than others. Each trial is categorized 

as the last element of a triplet in a moving window manner, which means that a given trial 

is characterized as the first element of a given triplet, as the second element of the 

following triplet and also as the last element of the next triplet, irrespective of whether it 

is a pattern or random trial. In the example sequence of Figure 4.1B, 2-r-4-r-3-r-1-r 

(numbers indicate the locations from left to right and ‘r’ indicates a randomly selected 

location out of the four possible ones), 2-X-4, 4-X-3, 3-X-1 and 1-X-2 (where X 

represents the middle element of the triplet) appeared with a higher probability because 

their third element could have been either pattern or random. Note that here, we use X to 

indicate the middle element of the triplet because for example 4-X-3 can appear both as 

4-2-3 (Pattern – random – Pattern) where the first and last elements are part of the 

predetermined pattern and as 4-2-3 (random – Pattern – random) where the first and last 

elements are random, and the middle element is part of the predetermined pattern (see 

also Fig. 4.1B and 4.1C). In contrast, triplets such as 4-2-1 or 4-2-2 occurred with a lower 

probability because their third element could have been only random (that is, random – 

Pattern – random structure). The former triplet types are called “high-probability” triplets, 

while the latter types are labeled as “low-probability” triplets (Howard, & Howard, 1997).  

Besides probability, another important aspect of the elements is their structure, 

meaning whether they are pattern or random elements. High-probability triplets can be 

differentiated based on their last element being a pattern element or a random element. 

The third element of low-probability triplets can only be random since pattern elements 
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always appear with high probability. Importantly, performance is not operationalized on 

the level of triplets; instead, performance (i.e., reaction time) is always calculated only on 

the last element of a triplet. Each element (i.e., trial) was categorized as the third element 

of either a high-probability or a low-probability triplet and also either as pattern or random 

elements (note that they are also visually distinguishable).  

There are 64 unique triplets in the task, including all Pattern – random – Pattern 

(50%) and random – Pattern – random (50%) triplets; 16 triplets are high-probability 

triplets, and 48 triplets are low-probability ones. Regarding high-probability triplets, there 

are four possible combinations in regard to the first and third elements of the triplet (for 

the example sequence: 2-r-4-r-3-r-1-r, 2-X-4, 4-X-3, 3-X-1 and 1-X-2) with four possible 

locations for the middle element. In detail, the high-probability triplet of 4-X-3 can be 4-

1-3, 4-2-3, 4-3-3 and 4-4-3. Since high-probability triplets can occur as Pattern – random 

– Pattern (50%) and by 1/4 chance as random – Pattern – random (12.5%), these triplets 

constitute 62.5% of all trials (Fig. 4.1C). As for low-probability triplets, the first and the 

second element of the triplet can appear on any of the four locations, whereas the last 

element has three possible locations as the fourth one corresponds to a high-probability 

triplet. Thus, low-probability triplets constitute 37.5% of all trials. As noted above, all 

low-probability triplets have a random – Pattern – random structure. On the level of 

unique triplets, high-probability triplets are five times more probable than the low-

probability ones (4% [62.5%/16] vs. 0.8% [37.5%/48]).  

Altogether, three trial types can be distinguished: (1) trials that belong to the 

predetermined sequence and are the last element of a high-probability triplet labeled as 

pattern trials (such as 4-2-3 in Fig. 4.1B and 4.1C marked with orange); (2) random 

elements that are the last element of a high-probability triplet called random high trials 

(such as 4-2-3 in Fig. 4.1B and 4.1C marked with blue); and (3) random elements that are 

the last element of a low-probability triplet labeled as random low trials (such as 4-2-1 in 

Fig. 4.1B and 4.1C marked with green). 

Prior studies have demonstrated that participants show gradually faster responses 

to high-probability triplets than low-probability ones as the task progresses (i.e., triplet 

learning in the original, uncued version of the ASRT task). However, as high-probability 

triplets consist of both pattern and random triplets, serial-order knowledge cannot be 

measured by comparing merely the high- and low-probability triplets. It is important to 

note that in the uncued ASRT task, the underlying structure is identical to the one in the 

cued ASRT task, however, pattern and random stimuli are not visually distinguishable 
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(Howard, & Howard, 1997). Due to the identical underlying structure, the dissection of 

probability-based and serial-order based regularities is possible in the uncued ASRT task, 

but excessive training (i.e., 4-day-long training) is needed for the acquisition of serial-

order knowledge (Howard, Howard, Japikse, DiYanni, et al., 2004; Howard, & Howard, 

1997). The visual distinction of pattern and random trials ensures that the acquisition of 

both probability-based and serial-order based regularities – also referred to as statistical 

and sequence learning, respectively (Howard, & Howard, 1997; Nemeth, Janacsek, & 

Fiser, 2013) – can be measured within the same time frame.  

Statistical learning is quantified by the difference in accuracy or reaction times 

(RTs) between random high- and random low-probability trials. These trials share the 

same sequence properties as they are both random but differ in statistical properties as, 

on the level of unique triplets, the former ones are more probable than the latter ones (see 

details above). Sequence learning is measured by the difference in accuracy or RTs 

between pattern and random high-probability trials. The statistical properties of these 

trials are identical as they are both highly probable, while their sequence properties differ 

as pattern trials are part of the predetermined sequence. In conclusion, statistical learning 

refers to the acquisition of purely probability-based information, while sequence learning 

captures the acquisition of serial order-based information (Fig. 4.1C).  

2.3. Procedure 

The experiment was composed of three sessions. The first two sessions were 

administered on the same day with a 5-hour delay between them, while the third session 

was administered ca. one year later (Mdelay = 53.08 weeks, SDdelay = 2.39 weeks, between 

47.95 and 60.24 weeks, Fig. 4.1D). The ASRT task was administered in all three sessions. 

In the Learning Phase, participants completed 20 blocks, which, during the statistical 

analyses, were collapsed into epochs, each containing five blocks. The Testing Phase 

consisted of 10 blocks (i.e., two epochs), while the Retesting Phase contained 20 blocks 

(i.e., four epochs) (Fig. 4.1D). Participants were assessed in a quiet room in their school. 

During the 5-hour offline period on the first day, they continued with their school 

activities such as classes and extracurricular activities. At the end of the first day (i.e., 

after the Learning and Testing Phases), participants were not informed that they would 

perform the task one year later. 
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Figure 4.1. The cued Alternating Serial Reaction (ASRT) task and experimental procedure. 

(A) Pattern and random trials were presented in an alternating fashion. Pattern trials were marked 

by a picture of a dog’s head, and random trials were marked by a picture of a penguin. (B) An 

example of the sequence structure. Numbers indicate pattern trials, and ‘r’ indicates a randomly 

selected location out of the four possible ones. The alternating sequence makes some runs of three 

consecutive trials (labeled as triplets) more probable than others, called high-probability and low-

probability triplets, respectively. Among high-probability triplets, the last element of the triplet 

can be either pattern or random. Based on this, we could determine pattern high-probability 

triplets (with orange shading in panel B and orange font in panel C) and random high-probability 

triplets (with blue shading in panel B and blue font in panel C). Among low-probability triplets, 

only random low-probability triplets can occur (with green shading in panel B and green font in 

panel C). (C) The underlying learning processes measured by the task. Statistical learning is 

calculated by contrasting the accuracies or RTs on the random high and random low trials (blue 

vs. green, the right column of the table). Sequence learning is quantified by contrasting the 

accuracies or RTs on the pattern and random high trials (orange vs. blue, the top row of the table). 

The table presents the calculation of learning processes on RT data. (D) The design of the 

experiment. The experiment was composed of three sessions. The Learning Phase consisted of 

four epochs (one epoch contained 5 blocks, and each block consisted of 85 stimuli), followed by 

a 5-hour offline period then the two-epoch-long Testing Phase on the same day. The Retesting 

Phase with four epochs was administered ca. one year later. Figure 4.1A, 4.1B, and 4.1C are 

adapted from Nemeth, Janacsek, and Fiser (2013), Figure 4.1D is adapted from Kóbor et al. 

(2017). 

2.4. Statistical analyses 

Statistical analyses were carried out by SPSS version 25.0 software (SPSS, IBM) 

and by JASP 0.11.1.0. software (JASP, 2019). Based on previous studies using the ASRT 

task (Kóbor et al., 2018; Nemeth, Janacsek, & Fiser, 2013; Simor et al., 2019), we firstly 

collapsed the blocks of the task into epochs, with each epoch consisting of five blocks. 



77 
 

This way, the Learning Phase contained four epochs, the Testing Phase contained two 

epochs, while the Retesting Phase consisted of four epochs. Epochs are labeled 

consecutively (from 1 to 10, Fig. 4.1D). From the analysis, two types of low-probability 

triplets were excluded: repetitions (e.g., 111, 222) and trills (e.g., 121, 242), as 

participants often show pre-existing tendencies to them (Song et al., 2007a, 2007b). As 

described above in the task description, each trial was determined as the last trial of a 

pattern, random high, or random low triplet. Mean accuracy (ratio of correct responses) 

and median RT (for correct responses) were calculated for each participant and each 

epoch, separately for the three types of trials (i.e., pattern, random high and random low 

trials). Based on the three trial types, statistical and sequence learning can be assessed by 

the cued ASRT task (Nemeth, Janacsek, & Fiser, 2013) (for further details, see the task’s 

description above). Analyses and results concerning accuracy are presented in the 

Supplementary Material; here, we focus on RT data. 

Prior developmental studies showed that age has a large effect on average RTs, 

with younger children showing slower RTs (e.g., Janacsek et al., 2012; Juhasz et al., 2019; 

Zwart et al., 2019). To test this, we first calculated average RTs over the 10 epochs (i.e., 

RT data were calculated on all correct trials, irrespective of trial types). We then 

correlated the average RTs with age: the analysis revealed significant negative correlation 

(r(68) = -.54, p < .001), showing that younger children were slower on the task. To control 

for the effect of average RT differences related to age on learning and consolidation of 

knowledge, we transformed the data in the following way. We divided each participants’ 

raw RT values of each trial type and each epoch by their own average performance (i.e., 

average RT) in the first epoch of the task (for a similar approach, see Horvath et al., 2020; 

Nitsche et al., 2003). Participants’ performance was around 1 at the beginning of the task 

and changed as the task progressed. Values above 1 meant that responses were slower on 

a given trial type than average RTs in the very first epoch of the task, while values below 

1 indicated faster responses on a given trial type compared to average RTs in the first 

epoch. We conducted all analyses on standardized RT data. 

Statistical learning score in the Learning Phase and memory scores in the Testing 

and Retesting Phases were quantified as the difference between random high and random 

low trial types in RT (RT for random low minus RT for random high trials). The learning 

and memory scores of sequence learning were calculated as the difference between 

pattern and random high trial types in RT (RT for random high minus RT for pattern 

trials; Fig. 4.1C). Higher scores indicate larger statistical or sequence learning/memory. 
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To assess learning and the retention of knowledge, repeated-measures ANOVAs and 

paired-samples t-tests were conducted on standardized RT data, separately for statistical 

and sequence learning. The Greenhouse-Geisser epsilon (ε) correction was used when 

necessary. Original df values and corrected p values (if applicable) are reported with 

partial eta-squared (η2
p) as a measure of effect size. For correlation analyses, in case of 

normal distribution, Pearson’s correlation was employed. When the assumption of normal 

distribution was violated, Spearman correlation was used for frequentist statistics and 

Kendall’s Tau-b correlation was used for Bayesian statistics.  

In conjunction with the frequentist analyses, we performed Bayesian paired-

samples t-tests and calculated the Bayes Factor (BF) for the relevant comparisons as well. 

The BF is an excellent tool that helps to conclude whether the collected data supports the 

null-hypothesis (H0) or the alternative hypothesis (H1) (Wagenmakers et al., 2011). BFs 

can be particularly relevant in consolidation studies where memory retention is reflected 

by evidence supporting the H0 rather than H1 (Dienes, 2014). In this case, H0 states the 

lack of difference between the mean of the memory scores before and after the offline 

period, while H1 means the mean that the memory scores differ. Here, we report BF01 

values, which were calculated using the JASP software (version 0.11.1.0., JASP, 2019). 

According to Wagenmakers et al. (2011) BF01 values between 1 and 3 indicate anecdotal 

evidence, values between 3 and 10 suggest substantial evidence and values larger than 10 

indicate strong evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, 

values between 1/3 and 1/10 indicate substantial evidence, and values below 1/10 indicate 

strong evidence for H1. Values around 1 do not support either hypothesis.  

3. Results 

3.1. Prerequisite of memory consolidation 

To assess memory consolidation, significant learning has to occur preceding the 

offline period. Therefore, as a first step, we conducted repeated-measures ANOVAs on 

the Learning Phase to confirm that significant learning has occurred concerning both 

statistical and sequence learning. ANOVAs were conducted on standardized RT data, 

separately for statistical and sequence learning. 

Statistical learning during the Learning Phase was tested with a two-way 

repeated-measures ANOVA on RT with PROBABILITY (random high vs random low) 

and EPOCH (1-4) as within-subject factors. The ANOVA showed significant statistical 
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learning (main effect of PROBABILITY, F(1, 69) = 128.65, p < .001, η2
p = .65; Fig. 

4.2A), participants showed faster responses to random high (M = 0.93) compared to 

random low trials (M = 0.98). RTs gradually decreased as the task progressed, irrespective 

of trial types (main effect of EPOCH, F(3, 207) = 50.29, p < .001, η2
p = .42). The RT 

difference between random high and random low trials did not change throughout the task 

(non-significant PROBABILITY × EPOCH interaction, F(3, 207) = 2.25, p = .084). 

To test sequence learning during the Learning Phase, a similar two-way repeated-

measures ANOVA on RT with ORDER (pattern vs random high) and EPOCH (1-4) as 

within-subject factors were conducted. The ANOVA confirmed significant sequence 

learning (main effect of ORDER, F(1, 69) = 6.09, p = .02, η2
p = .08; Fig. 4.2B). Pairwise 

comparisons showed faster RTs to pattern (M = 0.90) than to random high trials (M = 

0.93). RTs gradually decreased as the task progressed, irrespective of trial types (main 

effect of EPOCH, F(3, 207) = 86.85, p < .001, η2
p = .56). Moreover, participants were 

increasingly faster on pattern trials than on random high trials as the task progressed 

(revealed by the significant ORDER × EPOCH interaction, F(3, 207) = 4.43, p = .02, η2
p 

= .06). 

Furthermore, to investigate whether individual differences influence the learning 

on the task, we correlated statistical and sequence learning scores with working memory 

capacity, with percentage of perseverative errors on the WCST task, with socioeconomic 

status, and with total problem score on the SDQ. To control for multiple comparisons, we 

employed False Discovery Rate correction. None of the correlations were significant (all 

ps > .064). We also rerun the ANOVAs on the sample without left-handed participants to 

control for handedness. The results were identical to the ones on the whole sample.  

 

Figure 4.2. Temporal dynamics of (A) statistical and (B) sequence learning across epochs 

and sessions. Standardized RT values as a function of the epoch (1-10) and trial types (random 

high vs random low for statistical learning and pattern vs random high for sequence learning) are 
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presented. Blue lines with triangle symbols indicate standardized RT values on the random high 

trials, green lines with square symbols indicate standardized RT values on the random low trials 

and orange lines with circle symbols indicate standardized RT values on the pattern trials. (A) 

Statistical learning is quantified by the gap between blue and green lines and (B) sequence 

learning is quantified by the gap between orange and blue lines. In both cases, greater gap between 

the lines represents better learning. Error bars denote standard error of mean. 

3.2. Do children retain regularities after a one-year offline period? 

To test one-year consolidation of statistical knowledge, we conducted a two-way 

repeated-measures ANOVA on RT with PROBABILITY (random high vs random low) 

and EPOCH (6 vs. 7) as within-subject factors. Overall, irrespective of epochs, 

participants were faster on random high (M = 0.84) than on random low trials (M = 0.89) 

(main effect of PROBABILITY, F(1, 69) = 159.11, p < .001, η2
p = .70). Average RTs 

(i.e., RTs irrespective of trial types) differed in the two epochs (main effect of EPOCH, 

F(1, 69) = 3.92, p = .05, η2
p = .05), participants showed faster RTs in the 7th epoch (M = 

0.86) compared to the 6th epoch (M = 0.88). Crucially, the ANOVA revealed evidence for 

retained statistical memory after the one-year delay (non-significant PROBABILITY × 

EPOCH interaction, F(1, 69) = 0.03, p = .86, BF01 = 7.50; Fig. 4.3A), with similar 

memory scores in the 6th (M = 0.049) and in the 7th (M = 0.048) epochs. Furthermore, as 

the delay has some variability in terms of weeks (Mdelay = 53.08 weeks, SDdelay = 2.39 

weeks, between 47.95 and 60.24 weeks), we examined whether it has any relation to the 

long-term memory performance. First, we calculated an offline change score for 

statistical knowledge by subtracting the standardized memory score in Epoch 6 from the 

standardized memory score in Epoch 7. This way, negative scores indicate forgetting and 

positive scores indicate offline learning. Offline change score did not show correlation 

with the length of the long-term delay (rs(68) = .071, p = .558; BF01 = 5.115). 

To investigate one-year consolidation of serial-order knowledge, we also run a 

two-way repeated-measures ANOVA on RT with ORDER (pattern vs random high) and 

EPOCH (6 vs. 7) as within-subject factors. Overall, participants showed faster RTs on 

pattern (M = 0.80) than on random high trials (M = 0.84) (main effect of ORDER, F(1, 

69) = 5.88, p = .018, η2
p = .078). Average RTs were similar in the two epochs (main effect 

of EPOCH, F(1, 69) = 3.33, p = .073). Importantly, the ANOVA revealed retained serial-

order knowledge (non-significant ORDER × EPOCH interaction, F(1, 69) = 0.18, p = 

.67, BF01 = 6.97; Fig. 4.3B), memory scores were similar in the Testing and Retesting 

Phases (6th epoch: M = 0.05, 7th epoch: M = 0.045). Similarly to statistical knowledge, we 

also correlated the offline change score of serial-order knowledge and the length of the 
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long-term delay. One participant had to be excluded from the analysis as they showed 

extremely low offline change score according to Tukey (1977) criterion (more than 1.5 

times the interquartile range). Offline change scores did not correlate with the length of 

the delay (rs(67) = -.085, p = .485; BF01 = 5.011). 

Moreover, similarly for the learning scores, to investigate whether individual 

differences influence the consolidation of statistical or serial-order knowledge, we 

correlated the offline change scores with working memory capacity, with percentage of 

perseverative errors on the WCST task, with socioeconomic status, and with total problem 

score on the SDQ. To control for multiple comparisons, we employed False Discovery 

Rate correction. None of the correlations reached significance (all ps > .277). We also 

rerun the ANOVAs on the sample without left-handed participants to control for 

handedness. The results were identical to the ones on the whole sample. 

 

Figure 4.3. Retention of (A) statistical and (B) serial-order knowledge. Memory scores 

measured by standardized RT values for the last epoch of the Testing Phase (Epoch 6) and the 

first epoch of the Retesting Phase (Epoch 7). Error bars denote the standard error of mean. 

3.3. Does age affect the one-year retention of statistical and serial-order regularities? 

To check the possible association between age and retention, we conducted 

Pearson’s correlation between the offline change scores and age. Regarding statistical 

knowledge, offline change scores did not show correlation with age (r(68) = .06, p = .62, 

BF01 = 5.92). Concerning serial-order knowledge, one participant had to be excluded from 

the analysis on RT data as they showed extremely low offline change score according to 

Tukey (1977) criterion (more than 3 times the interquartile range). The correlation 

between the offline change score of serial-order knowledge represented by RT values and 

age was also not significant (r(67) = -.06, p = .62, BF01 = 5.91). 
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4. Discussion 

The present study aimed to investigate the one-year consolidation of probability-

based and serial order-based regularities in children aged 9 to 15 years. We have shown 

retained knowledge of both information after the one-year offline period; participants 

successfully learnt and stabilized the regularities, and the acquired knowledge was 

resistant to forgetting over a long period of time. Additionally, successful retention was 

irrespective of age as we have not found association between the retention of probability-

based or serial order-based regularities and age. Our results are supported by Bayesian 

statistics as well, further strengthening the evidence for successful one-year retention. 

Both statistical and serial-order knowledge has been successfully retained after 

the one-year offline period, which is in accordance with previous adult studies (Kóbor et 

al., 2017; Romano et al., 2010). However, Romano et al. (2010) and Kóbor et al. (2017) 

employed the original, uncued version of the ASRT task in which probability-based and 

serial order-based regularities are intermixed. Here, we went beyond these studies by 

employing the cued version of the ASRT task which is designed to disentangle these two 

types of regularities. This version dissects probability-based and serial order-based 

regularities by marking pattern and random elements with different visual stimuli. This 

modification results in the possibility of measuring the acquisition of probability-based 

and serial order-based regularities (i.e., statistical and sequence learning, respectively) 

within the same experimental design and within the same time window (Nemeth, 

Janacsek, & Fiser, 2013). It is important to note that the dissection of probability-based 

and serial order-based regularities in the ASRT task is possible even in the original, 

uncued version of the task (i.e., where pattern and random stimuli are not visually 

distinguishable), however, excessive training (i.e., four-day-long practice) is needed to 

reach that aim (Howard, Howard, Japikse, DiYanni, et al., 2004; Howard, & Howard, 

1997). By implementing the cued version of the ASRT task in our study design, we could 

simultaneously measure the encoding and consolidation of probability-based and serial 

order-based information, enabling us to compare the consolidation of these two processes. 

Although several empirical studies have shown the differences between statistical and 

sequence learning in encoding, to the best of our knowledge, only two studies have 

investigated the consolidation of these processes within the same experimental design. 

Simor et al. (2019) have found retained knowledge after a one-hour offline period with 

no difference on the behavioral level between statistical and serial-order knowledge. 
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However, on the neural level, they discovered that slow frequency oscillations (high delta 

and theta power) during sleep predicted further improvements in sequence learning, while 

changes in statistical learning were not associated with spectral EEG power measures. 

Zavecz et al. (2020) also explored the brain activity underlying the consolidation of 

probability-based and serial order-based information. Although the consolidation of 

probability-based and serial order-based information was comparable on the behavioral 

level showing successful retention of both types of knowledge, differences emerged on 

the neural level. Consolidation of statistical knowledge was in relation with learning-

induced changes in delta-frequency connectivity between local, short-range connections, 

while consolidation of serial-order knowledge was associated with learning-induced 

changes in alpha frequency connectivity over long-range centro-parietal networks. Taken 

together, the present study corroborates these findings as we also showed retention of 

statistical and serial-order knowledge after a one-year offline period on the behavioral 

level. Further studies are warranted to examine brain activity underlying long-term 

consolidation of probability-based and serial order-based information. 

The findings of retained statistical and serial-order knowledge in children after a 

long period of time extends previous studies showing retention or even offline learning 

over the short or medium term. In more detail, Fischer et al. (2007) showed retained 

statistical knowledge after an 11-hour offline period spent awake; whereas  Desmottes et 

al. (2017) investigated sequence-specific learning and found offline learning both after 

24-hour and one-week delay, and Hedenius, et al. 32 found retained serial-order 

knowledge following a 24-hour delay. Four studies (Hedenius et al., 2020; Hedenius et 

al., 2013; Hedenius et al., 2011; Takács et al., 2018)7 employed the uncued ASRT task 

(intermixing probability-based and serial order-based regularities). They found retained 

knowledge following a 16-hour (Nemeth, Janacsek, Balogh, et al., 2010; Takács et al., 

2018) and three-day (Hedenius et al., 2011) offline period, and offline learning following 

a 24-hour delay (Hedenius et al., 2020). Our results on RT data are consistent with these 

studies. Although here we focused on RT data, analyses on accuracy data also yielded 

similar results (see Supplementary Material). Altogether, our results corroborate and 

extend the previous ones with showing successful retention after a one-year long offline 

period.  

Although unveiling lifespan differences in the consolidation of statistical and 

serial-order knowledge was not the goal of the present study, it is worth noting that our 

results are in line with the findings of Romano et al. (2010) and Kóbor et al. (2017), 
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showing successful one-year retention in adults. The development and lifespan trajectory 

of the acquisition of probability-based and serial order-based information underwent 

thorough investigation (e.g., Janacsek et al., 2012; Lukács & Kemény, 2015; Nemeth, 

Janacsek, & Fiser, 2013; Reber, 1993); however, no consensus emerged whether learning 

is age-dependent or not (for a review, see Zwart et al., 2019). Nemeth, Janacsek, and Fiser 

(2013) examined the acquisition of probability-based and serial order-based regularities 

employing both the uncued and the cued ASRT task in a population of neurotypicals 

between the age of 11 and 39. In the uncued condition, 11-13-year-old children showed 

higher extent of statistical learning compared to the other age groups. This falls in line 

with the ‘less is more’ model, which proposes age-dependent learning of regularities with 

a peak performance during childhood, up until the age of 12 (Janacsek et al., 2012; Juhasz 

et al., 2019). In contrast, statistical learning was age-invariant in the cued condition. 

Sequence learning was similar in all age groups in both the cued and uncued conditions 

(Nemeth, Janacsek, & Fiser, 2013), suggesting that the acquisition of serial order-based 

information is comparable from childhood to adulthood. Here, we went beyond the study 

of Nemeth, Janacsek, and Fiser (2013) by investigating the consolidation of probability-

based and serial order-based regularities. Importantly, not only learning but consolidation 

of statistical and serial-order knowledge could also differ during the lifespan (e.g., Adi‐

Japha, Badir, Dorfberger, & Karni, 2014; Fischer et al., 2007). Fischer et al. (2007) 

showed age-dependent consolidation of statistical knowledge in the case of sleep-

dependent consolidation. Adults benefited from sleep and showed better consolidation of 

statistical knowledge after sleep than wakefulness, while the exact opposite picture 

emerged in children (however, for the confounding effect of pre-sleep level performance, 

see Wilhelm, Metzkow‐Mészàros, Knapp, & Born, 2012). As for the consolidation of 

serial-order knowledge, the results of Adi‐Japha et al. (2014)  suggests a more nuanced 

picture: memory performance in childhood and adulthood on the behavioral level 

appeared similar, showing retention of knowledge in both age groups, however, children 

seemed to be less susceptible to subsequent interference than adults. In the present study, 

we found long-lasting representation of statistical and serial-order knowledge, similarly 

to the studies of Romano et al. (2010) and Kóbor et al. (2017) that showed retained 

statistical knowledge following a one-year offline period in adults. Thus, our study offers 

indirect evidence of comparable consolidation of probability-based and serial order-based 

information in childhood and adulthood, supporting developmental invariance in 

consolidation. The lack of association between retention and age in our sample also 
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promotes the developmental invariance model. Nevertheless, as we did not directly 

contrast the performance of adult and children populations, further studies are warranted 

to examine the long-term memory performance of statistical and serial-order knowledge 

in adults and children within the same experimental design. 

It is also worth looking at our results from a broader perspective of memory 

consolidation, namely the distinction between procedural and declarative processes. 

Statistical and serial-order regularities have been proposed to be two aspects of procedural 

memory, i.e., the system underlying the acquisition of skills and habits (Howard, & 

Howard, 1997; Nemeth, Janacsek, & Fiser, 2013). Hence, our results, together with 

previous studies on adults, suggest that consolidation of procedural knowledge is age-

invariant and comparable from childhood to adulthood, both after short-term and long-

term delay. The developmental differences of declarative memory, i.e., the system 

underlying the learning and remembering of facts and events, has also been investigated 

across the lifespan. While declarative memory abilities have been extensively shown to 

improve across childhood and adolescence, particularly memory for contextual details 

(e.g., Bouyeure & Noulhiane, 2020; Gulya et al., 2002; Picard, Cousin, Guillery‐Girard, 

Eustache, & Piolino, 2012), the developmental differences of declarative memory 

consolidation using relatively long offline periods (i.e., more than 24 hours) have been 

tested only in a handful of studies. For example, Henderson, Weighall, Brown, and Gareth 

Gaskell (2012) showed that children have retained knowledge of object’ locations 

following a one-week delay. Relatedly, in school-aged children, cued recall of previously 

learnt novel words was maintained (Smith et al., 2018) or even improved (Henderson et 

al., 2012) after a one-week offline period. Recognition of novel words was also 

maintained after a one-week delay (Henderson et al., 2012). Similarly, in neurotypical 

adults, Gaskell and Dumay (2003) showed retained explicit recognition of priorly 

acquired novel words and Dumay, Gaskell, and Feng (2004) found increased free recall 

of novel words after a one-week offline period. In sum, similarly to procedural memory, 

long-term consolidation of declarative memory (one-week delay in these examples) 

seems to be comparable between school-aged children and adults, at least considering the 

learning and recalling of novel words. Note that, to the best of our knowledge, no one-

year consolidation has been tested for this (or other) aspect of declarative memory in 

children that would allow greater comparability. Future studies are warranted to directly 

compare the developmental trajectory of the long-term consolidation of procedural and 

declarative memory within the same groups using a range of offline delays. 
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In the present study, we took into consideration several possible confounds of 

consolidation. Participants completed the task three times: (1) in the Learning Phase, (2) 

in the Testing Phase five hours later on the same day and (3) in the Retesting Phase one 

year later, with no practice during the offline periods. Employing this study design, we 

controlled for the following possible confounds. First, by implementing a Testing Phase 

in the design, we controlled for the short-term (five-hour) consolidation of information. 

Second, as participants were unaware of the fact that they will be tested with the same 

task later, any confounding effects of explicit strategy during acquisition or consolidation 

were minimized. Lastly, during the offline periods, there was no practice, which could 

have led to the reactivation of the acquired knowledge. Moreover, we took into account 

the possible confounding effect of individual differences on consolidation. We correlated 

consolidation performance with working memory capacity, executive functions, 

socioeconomic status, behavioral and emotional problems, and examined the role of 

handedness as well. We did not find any relation between these factors and consolidation 

performance; therefore, it is highly unlikely that individual differences confounded our 

results. 

Taken together, the present study demonstrated that the representation of 

statistical and serial order-based regularities remains stable over a long period of time in 

neurotypical children and can be successfully retained after a one-year offline period. We 

showed that the knowledge of statistical and serial order-based regularities is robust and 

resistant to forgetting over a one-year offline period, with no difference between the two 

aspects of learning. Our study also offers indirect evidence for the developmental 

invariance of consolidation of statistical and serial-order knowledge.  
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V. Study 4: Lifespan developmental invariance in memory 

consolidation: evidence from procedural memory 

Publication: 

Tóth-Fáber, E., Nemeth, D. & Janacsek, K. (2023). Lifespan developmental invariance 

in memory consolidation: evidence from procedural memory. PNAS Nexus, pgad037. 

https://doi.org/10.1093/pnasnexus/pgad037 

Abstract 

Characterizing ontogenetic changes across the lifespan is a crucial tool in understanding 

neurocognitive functions. While age-related changes in learning and memory functions 

have been extensively characterized in the past decades, the lifespan trajectory of memory 

consolidation, a critical function that supports the stabilization and long-term retention of 

memories, is still poorly understood. Here we focus on this fundamental cognitive 

function and probe the consolidation of procedural memories that underlie cognitive, 

motor, and social skills and automatic behaviors. We used a lifespan approach: 255 

participants aged between 7 and 76 performed a well-established procedural memory task 

in the same experimental design across the whole sample. This task enabled us to 

disentangle two critical processes in the procedural domain: statistical learning and 

general skill learning. The former is the ability to extract and learn predictable patterns of 

the environment, while the latter captures a general speed-up as learning progresses due 

to improved visuomotor coordination and other cognitive processes, independent of 

acquisition of the predictable patterns. To measure the consolidation of statistical and 

general skill knowledge, the task was administered in two sessions with a 24-hour delay 

between them. Here, we report successful retention of statistical knowledge with no 

differences across age groups. For general skill knowledge, offline improvement was 

observed over the delay period, and the degree of this improvement was also comparable 

across the age groups. Overall, our findings reveal age invariance in these two key aspects 

of procedural memory consolidation across the human lifespan.  

  

https://doi.org/10.1093/pnasnexus/pgad037
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Significance statement 

Consolidation is a critical function responsible for the stabilization and long-term 

retention of memories. Here, we tested the consolidation of procedural memories, which 

underlie skills and automatic behaviors, using a lifespan approach. In contrast to the age-

variant lifespan trajectory of procedural learning, our results revealed age-invariant 

procedural memory consolidation across the lifespan. Thus, procedural learning and 

consolidation seem to follow distinct developmental curves in neurotypical individuals. 

These findings suggest at least partially different neural underpinnings of learning versus 

consolidation and will likely stimulate future neuroimaging research and theory 

development of memory. 
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1. Introduction 

Identifying age-related changes in cognitive functions across the human lifespan is a 

crucial step in understanding brain development and developing more efficient diagnostic 

tools and interventions for developmental delays and decline in old age. Substantial 

research has focused on characterizing how cognitive functions change across the 

lifespan. The largest body of evidence comes from studies comparing the cognitive 

performance of typically two to four age groups. There are comparably fewer large-scale, 

cross-sectional or longitudinal studies that track performance from childhood to older 

adulthood (i.e., across the lifespan) using the same task. These large-scale studies, 

however, are essential for a better understanding of cognitive changes across the lifespan 

as they control for a range experimental and analytical factors that cannot be controlled 

when lifespan trajectories are inferred based on a diverse set of individual studies. 

Combined evidence from these different study approaches reveals markedly distinct 

lifespan trajectories depending on the cognitive function of interest. For example, aspects 

of executive functions (Cepeda, Kramer, & Gonzalez de Sather, 2001; Zelazo, Craik, & 

Booth, 2004), working memory (Alloway & Alloway, 2013; Borella, Carretti, & De Beni, 

2008; Conklin, Luciana, Hooper, & Yarger, 2007), autobiographical memory (Rathbone, 

Moulin, & Conway, 2008) and episodic memory (Bauer et al., 2013; Dikmen et al., 2014) 

have been shown to follow an inverted U-shape trajectory, with continuous maturation 

during childhood, a peak performance in young adulthood, and a deterioration in older 

adulthood. In contrast, language acquisition, general skill learning, and statistical 

learning—the ability to extract and learn predictable patterns of the environment—seem 

to peak during childhood, followed by a decline in adulthood (Janacsek et al., 2012; 

Johnson & Newport, 1989; Juhasz et al., 2019). Furthermore, certain cognitive functions 

might remain intact later in life as well, such as automatic processes of memory retrieval 

(Ikier, Yang, & Hasher, 2008). While our knowledge on the age-related changes in 

learning and memory functions has greatly expanded in the past decades, the lifespan 

trajectory of memory consolidation—a critical function that is responsible for the 

stabilization and long-term retention of memories—is still poorly understood. Here we 

focus on this fundamental cognitive function and probe the consolidation of memories 

acquired via statistical learning using a lifespan approach.  

Statistical learning is a crucial aspect of life from infancy to old age as it enables 

us to extract complex probabilistic regularities embedded in the environment, allowing 
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us to adapt to our surroundings throughout the human lifespan (Armstrong, Frost, & 

Christiansen, 2017; Aslin, 2017; Fiser & Aslin, 2002; Saffran, Aslin, &  Newport, 1996; 

Turk-Browne, Scholl, Johnson, & Chun, 2010). Through extensive practice, statistical 

learning contributes to the acquisition of automatic behaviors, such as skills and habits, 

which are rooted in procedural memory (Hallgato et al., 2013; Kaufman et al., 2010; 

Romano et al., 2010; Ullman, 2004). The developmental trajectory of statistical learning 

has been described with three different models (Zwart et al., 2019). The age-invariant 

model suggests no developmental changes across the lifespan (Reber, 1993), based on 

studies showing comparable learning performance in children and adults (e.g., 

Meulemans et al., 1998) and based on results showing that statistical learning is related 

to brain regions that mature early, such as the striatum (Reber, 1993). The other two 

models propose that statistical learning varies as a function of age. The inverted U-shaped 

model suggests a gradual improvement over childhood and adolescence, with the best 

performance in young adulthood and a decline with aging (Lukács & Kemény, 2015). 

This model is supported by results finding better learning performance in young 

adulthood than in childhood and old adulthood (e.g., Thomas et al., 2004). Involving a 

large sample of participants from childhood to old adulthood, a study (Lukács & Kemény, 

2015) found evidence for the inverted U-shaped model examining participants between 7 

and 87 years of age. The third model, which can be referred to as ‘competition model’, 

argues for better statistical learning in childhood (under the age of 12), less effective 

learning in adolescence and adulthood and a decline in old adulthood (Janacsek et al., 

2012; Juhasz et al., 2019). In detail, Janacsek et al. (2012) differentiate between the 

detection of raw probabilities and the usage of internal models. They argue that due to the 

yet underdeveloped internal models, children are more sensitive to raw statistical 

probabilities of the environment, which translates to better statistical learning 

performance. The development of internal models in adolescence and adulthood then 

leads to less reliance on raw statistical probabilities as more complex interpretations of 

the observed probabilities emerge. The decline in old adulthood can be explained by 

reduced sensitivity to raw statistical probabilities, increased rigidness of internal models, 

and/or a weaker connection between these two systems. Employing a lifespan approach, 

a study (Janacsek et al., 2012) investigated participants from the age of 4 to 85 years, 

showing better statistical learning under the age of 12. Moreover, Nemeth, Janacsek, and 

Fiser (2013) contrasted the performance of five age groups from 11 to 39 years. They 

showed better statistical learning in the 11-13-year-old group compared to the other age 
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groups, while statistical learning was similar from the age of 14 to 39. A recent study by 

Juhasz et al. (2019) examined statistical learning from the age of 7 to 85 years involving 

the same pool of participants as the present study. Notably, Juhasz et al. (2019) focused 

on the trajectory of statistical learning and general skill learning (see below for details), 

whereas the present study focuses on the 24-hour consolidation of such knowledge. 

Importantly, statistical learning does not occur only during practice but also 

between the practices, in the so-called offline periods. Via consolidation, the initially 

fragile and unstable memory representations are converted into a more stable form, 

ensuring that they are preserved and can be retrieved later (Walker, 2005). Successful 

consolidation can be reflected by retention (i.e., no forgetting, similar performance at the 

end of learning and during subsequent testing) or even by offline gains (i.e., offline 

learning, better performance during testing than at the end of learning) (Robertson et al., 

2004). The consolidation of knowledge acquired via statistical learning has been tested 

across different time delays (e.g., from hours to days or even a year) between learning 

and testing, but all studies have focused on one age group at a time or contrasted 

performance of a couple of age groups (e.g., children vs. adults; young vs. older adults) 

only. The present study aims to go beyond previous research by examining consolidation 

of statistical knowledge across the lifespan, in a sample of participants aged between 7 

and 76 years.  

Despite the ample investigation on the lifespan trajectory of statistical learning, 

the consolidation of such knowledge did not receive much attention. To the best of our 

knowledge, no models were proposed for the lifespan trajectory of the consolidation of 

statistical knowledge. Considering the proposed trajectories of statistical learning, 

different developmental curves can be proposed for the consolidation of statistical 

knowledge. As described above, two age-variant trajectories have been proposed for the 

development of statistical learning (Janacsek et al., 2012; Lukács & Kemény, 2015). It 

raises the question whether we can expect that the consolidation of such knowledge will 

also follow an age-variant trajectory. In atypical development, it has been demonstrated 

that learning and consolidation can show dissociation: Enhanced learning and intact 

consolidation has been shown in Tourette syndrome (Takács et al., 2018), whereas 

impaired consolidation has been shown to accompany intact learning in developmental 

dyslexia (Hedenius et al., 2021). However, it is still an open question whether learning 

and consolidation show a dissociation in neurotypical populations, especially across 

development and aging. 
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As described above, research on the consolidation of statistical knowledge has 

focused on one age group at a time or contrasted performance in a couple of age groups 

only. Most studies have suggested that children and adolescents can successfully retain 

the acquired knowledge following delays ranging from hours to one-year (Hedenius et 

al., 2013; Hedenius et al., 2011; Nemeth, Janacsek, Balogh, et al., 2010; Takács et al., 

2018; Tóth-Fáber, Janacsek, et al., 2021), while others have found offline learning (i.e., 

improved performance) in a group of children and adolescents after a 24-hour delay 

(Hedenius et al., 2020). Smalle, Page, Duyck, Edwards, and Szmalec (2018) investigated 

a related process, that is, Hebb learning in a longitudinal design with 8-9-year-old children 

and adults and tested the retention of sequences over a four-hour, one-week and one-year 

offline delay. The results showed better consolidation in children compared to adults 

across all offline periods. In young and middle aged adults, knowledge of statistical 

regularities seems to be successfully retained, irrespective of the length of delay (e.g., 

Arciuli & Simpson, 2012; Horvath et al., 2020; Kim et al., 2009; Kóbor et al., 2017; Meier 

& Cock, 2014; Nemeth, Janacsek, Király, et al., 2013; Romano et al., 2010; Simor et al., 

2019; Song et al., 2007b). In contrast, the handful of studies focusing on older adults have 

revealed mixed results: Some studies have suggested retention of the acquired knowledge 

(Romano et al., 2010), whereas others have indicated a decline over the delay period 

(Nemeth & Janacsek, 2011). Overall, based on these studies, no firm conclusions could 

be drawn on the consolidation of statistical knowledge across the lifespan, although 

retention (that is, no performance change) seems to be the most plausible outcome for 

most age groups, which would support an age-invariant model of the consolidation of 

statistical knowledge.  

Since statistical learning requires repeated exposure to the same regularities 

(Conway, 2020), during this period of repeated exposure (i.e., in the learning phase), other 

learning processes are also engaged that could confound the measures and interpretation 

of statistical learning as well as its consolidation. One such learning process is called 

general skill learning, which refers to the faster processing of and responding to stimuli 

and improved visuomotor coordination as a result of practice, independent of the 

regularities embedded in the stimulus stream (Hallgato et al., 2013; Juhasz et al., 2019). 

In the present study, we use a task design that enables us to tease apart consolidation 

processes specific to statistical knowledge by contrasting it to the consolidation of general 

skill knowledge. Unveiling the lifespan trajectory of the consolidation of statistical and 

general skill knowledge using a carefully controlled, identical design across age groups 
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from childhood to older adulthood can significantly improve our understanding of how 

the consolidation of different types of knowledge changes across development and aging 

and can shed light on the age-related changes in brain plasticity supporting these 

functions. 

With regards to the consolidation of general skill knowledge, offline improvement 

has been shown both in children and adults, that is, participants usually exhibited faster 

average reaction times after an offline period (Csábi et al., 2013; Csabi et al., 2015; 

Hedenius et al., 2020; Hedenius et al., 2013; Nemeth, Janacsek, Balogh, et al., 2010; 

Nemeth, Janacsek, Király, et al., 2013). Nevertheless, whether the extent of offline 

improvement differs across development from childhood to adulthood remains unclear. 

In older adults, the results on the consolidation of general skill knowledge are largely 

mixed. Elderly participants demonstrated offline gains over a 12-hour delay (Nemeth & 

Janacsek, 2011; Nemeth, Janacsek, Londe, et al., 2010) , but the gain was smaller than in 

young adults (Nemeth, Janacsek, Londe, et al., 2010). Moreover, Nemeth and Janacsek 

(2011) did not find evidence for improvement following 24-hour and one-week delays in 

older adults, while young adults showed significant improvements following both delay 

periods. Retention but no offline improvement of general skill knowledge has been found 

over a one-year delay as well, with no differences between young and older adults 

(Romano et al., 2010). Thus, while offline improvement of general skill knowledge may 

be expected in some cases (e.g., for shorter delays), overall, no conclusive pattern across 

studies could be revealed, especially for potential differences in the extent of this 

improvement from childhood to adulthood. Nonetheless, based on the previous studies, 

it is reasonable to expect at least some age-variance for the consolidation of general skill 

knowledge. 

To the best of our knowledge, no study has tested consolidation of statistical 

and/or general skill knowledge with the same experimental design across the lifespan so 

far. The present study fills this gap using a learning task that enables us to tease apart 

consolidation processes specific to statistical knowledge vs. general skill knowledge in a 

large sample of participants aged between 7 and 76 years. By employing the same 

experimental design across the whole sample, our study can unveil the lifespan trajectory 

of the consolidation of statistical and general skill knowledge: Crucially, it can provide 

clear evidence for potential differences in consolidation across age groups from childhood 

to older adulthood as well as across knowledge types. Based on the previous empirical 

findings, for the lifespan trajectory of consolidation of statistical knowledge, an age-
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invariant trajectory can be proposed, whereas the consolidation of general skill 

knowledge might follow an age-variant trajectory. The findings of the present study can 

greatly improve our understanding of the consolidation of different types of knowledge 

across the human lifespan and can shed light on the age-related changes in brain plasticity 

supporting these functions. Unveiling the lifespan trajectory of statistical as well as 

general skill knowledge can also help develop a theoretical model for these processes. 

2. Methods 

2.1. Participants 

Two hundred-seventy participants took part in the present study. They were assigned to 

nine age groups (n = 30 in each group). Fourteen participants were excluded based on 

outlier (above 3 SDs) performance in average response times or accuracy during the 

whole experiment compared to their respective age group. The developmental trajectory 

of statistical learning and general skill improvements in the Learning Phase of this sample 

are reported in Juhasz et al. (2019). The present study focuses on the consolidation of 

statistical knowledge and general skills; these results were not reported elsewhere. For 

consistent age distribution, we decided to exclude one (85-year-old) participant from the 

oldest age group due to being outlier in terms of age. Hence, the final sample of the 

present study consisted of 255 participants aged between 7 and 76 years. Mean and 

standard deviation for age and gender ratio for all age groups are presented in Table 5.1. 

Caregivers of underage participants completed a parental questionnaire and adults 

completed a self-report questionnaire regarding health-related questions. All participants 

had normal or corrected-to-normal vision and none of the participants had any 

neurological, psychiatric, or neurodevelopmental disorder. Adult participants gave 

informed written consent, whereas caregivers of underage participants provided informed 

written consent and children and adolescents provided verbal consent to participate in the 

study before enrollment. Participants received no financial compensation for 

participation. All experimental procedures were approved by University Research Ethics 

Committee, and was conducted in accordance with the Declaration of Helsinki. 
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Table 5.1. Demographic data (mean and standard deviation for age, and gender ratio) for 

all age groups. 

Group Age Gender 

7-8-year-old (n=26)  7.92 (0.27) 13 M / 13 F 

9-10-year-old (n=28)  9.79 (0.42) 13 M / 15 F 

11-13-year-old (n=30) 12.10 (0.61) 13 M / 17 F 

14-15-year-old (n=30) 14.55 (0.57) 13 M / 17 F 

16-17-year-old (n=30) 16.56 (0.54) 13 M / 17 F 

18-29-year-old (n=30) 21.64 (2.93) 12 M / 18 F 

30-44-year-old (n=30) 36.67 (3.81) 12 M / 18 F 

45-60-year-old (n=26) 51.65 (4.46) 6 M / 20 F 

61-76-year-old (n=25) 65.28 (4.47) 5 M / 20 F 

 

2.2. Task 

The Alternating Serial Reaction Time (ASRT) task was used to assess statistical learning 

and consolidation (Howard, & Howard, 1997; Nemeth, Janacsek, Londe, et al., 2010). In 

this task, four horizontally arranged empty circles are presented on the screen and a 

stimulus (a dog’s head) appeared in one of the circles (Nemeth, Janacsek, Polner, & 

Kovacs, 2013). Participants were instructed to press a corresponding key (Z, C, B, or M 

on a QWERTY keyboard) as quickly and accurately as they could when the stimulus 

occurred using their index and middle fingers. After the correct response of the 

participant, the next stimulus appeared 120 ms later. Unbeknownst to the participants, the 

presentation of stimuli followed an eight-element sequence, within which pattern (P) and 

random (r) trials alternated with each other (e.g., 2-r-4-r-3-r-1-r; where numbers indicate 

the four locations on the screen from left to right, and r denote a randomly chosen location 

out of the four possible ones; see Fig. 1).  

Due to this alternating sequence, some runs of three consecutive trials (triplets) 

were more probable than others. In the example sequence 2-r-4-r-3-r-1-r, triplets 2-X-4, 

4-X-3, 3-X-1, and 1-X-2 (where X indicates the middle element of the triplet) occurred 

with a higher probability because they were presented in every sequence repetition (P-r-

P) and could also be formed by chance (r-P-r, see Fig. 5.1B). Note that here, we use X to 

indicate the middle element of the triplet because, for example, 4-X-3 (e.g., 4-2-3 in Fig. 

5.1B) can appear both as a P-r-P structure (where the first and last element of the triplet 

belong to the predetermined pattern) and as a r-P-r structure (where the first and last 

elements are random, and the middle element is part of the predetermined pattern). In 

contrast, triplets 2-X-1 and 3-X-2 occurred with a lower probability since they could only 
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be formed by chance (that is, their structure could only be r-P-r). The former triplet types 

are referred to as high-probability triplets and the latter ones as low-probability triplets. 

Overall in the task, high-probability triplets were five times more probable than the low-

probability ones (Kóbor et al., 2017; Nemeth, Janacsek, & Fiser, 2013). Note that triplets 

were identified using a moving window throughout the stimulus stream. Thus, each trial 

was categorized as the third element of a high- or a low-probability triplet, and this 

categorization was used in our analyses; the same trial then served as the middle and the 

first element for the categorization of the following triplets.  

The ASRT task enables us to separate statistical learning from general skill 

improvements. Statistical learning is defined as faster and more accurate responses to 

high-probability elements than to low-probability ones (Howard, & Howard, 1997). In 

contrast, general skill improvements refer to average speed-up and changes in accuracy 

that are independent of the probabilities of events. These improvements reflect more 

efficient visuomotor and motor-motor coordination due to practice (Hallgato et al., 2013; 

Juhasz et al., 2019).  

 

Figure 5.1. The Alternating Serial Reaction Time (ASRT) task. (A) Pattern and random trials 

were presented in an alternating fashion; the trial types were indistinguishable on the surface 

level: a picture of a dog’s head served as stimuli in all trials. The alternating sequence was coded 

by the location of stimuli. In pattern trials, the location of stimuli was predetermined, and occurred 
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in the same order throughout the experiment. In random trials, randomly chosen locations out of 

the four possible ones were presented. (B) An example of the sequence structure. Numbers 

indicate the predetermined stimulus locations in pattern trials, and rs indicate randomly selected 

locations out of the four possible ones. Due to the alternating sequence, some runs of three 

consecutive trials (triplets) were more probable than others, referred to as high-probability (green 

shading) and low-probability triplets (blue shading), respectively. Since high-probability triplets 

could occur as pattern-ending triplets (50% of all trials) and by chance as random-ending triplets 

(12.5% of all trials), these triplets constituted 62.5% of all trials. Low-probability triplets 

constituted the remaining 37.5% of the trials; these were all random-ending triplets. Note that 

triplets were identified using a moving window throughout the stimulus stream: each trial was 

categorized as the third element of a high- or a low-probability triplet; the same trial then served 

as the middle and the first element for the categorization of the following triplets. Fig. 5.1 is 

adapted from Nemeth, Janacsek, and Fiser (2013)  and Zavecz et al. (2020). 

2.3. Procedure 

The ASRT task was presented in blocks. One block consisted of 85 trials: each block 

started with five random practice trials followed by the eight-element sequence repeated 

10 times. After each block, participants received feedback about their general 

performance, that is, about their average RTs and accuracy. The ASRT task was 

administered in two sessions with a 24-hour delay between them. The Learning Phase 

consisted of 20 blocks. The Testing Phase contained five blocks. 

For the alternating sequence, there were 24 permutations of the four possible 

spatial positions for the predetermined order of pattern trials. However, because of the 

continuous presentation of the stimuli, for instance, the sequences 2-r-1-r-3-r-4, 1-r-3-r-

4-r-2, 3-r-4-r-2-r-1, and 4-r-2-r-1-r-3 were considered identical as they consisted of the 

same triplets. Consequently, there were six unique sequence permutations: 1-r-2-r-3-r-4-

r, 1-r-2-r-4-r-3-r, 1-r-3-r-2-r-4-r, 1-r-3-r-4-r-2-r, 1-r-4-r-2-r-3-r, and 1-r-4-r-3-r-2-r. 

One of these unique permutations was selected for each participant in a pseudorandom 

manner. For a given participant, the sequence permutation remained the same over the 

Learning and Testing Phases. 

In our study, participants were not informed about the underlying probability 

structure of the sequence, and they did not even know that they were in a learning 

situation. Nevertheless, potentially emerged explicit knowledge about the structure was 

probed by a questionnaire at the end of the Testing Phase (Nemeth, Janacsek, Londe, et 

al., 2010; Song et al., 2007b). None of the participants reported noticing the sequence in 

the task. Thus an implicit, non-conscious form of learning was tested (Cleeremans & 

Dienes, 2008; Reber, 1989; Vékony, Ambrus, Janacsek, & Nemeth, 2021). This is in line 

with previous studies showing that participants remain unaware of the sequence even after 



98 
 

extended practice, or when more sensitive recognition tests are used to assess explicit 

knowledge (Howard, Howard, Japikse, DiYanni, et al., 2004; Song et al., 2007b). 

2.4. Statistical analysis 

Statistical analysis was based on previous studies (Kóbor et al., 2017; Nemeth, Janacsek, 

Londe, et al., 2010; Romano Bergstrom, Howard, & Howard, 2012); to facilitate data 

processing, epochs of five blocks were analyzed instead of single blocks (e.g., Blocks 1-

5 corresponded to Epoch 1, Blocks 6-10 to Epoch 2, and so on). The Learning Phase 

consisted of four epochs, while the Testing Phase consisted of one epoch. Similarly to 

previous studies, two types of low-probability triplets, repetitions (e.g., 222, 333) and 

trills (e.g., 212, 343), were eliminated because people often show preexisting response 

tendencies to them (Howard, Howard, Japikse, DiYani, et al., 2004; Soetens, Melis, & 

Notebaert, 2004). By eliminating these triplets, we could ensure that any high- versus 

low-probability differences were due to statistical learning and not to preexisting 

tendencies. We calculated mean accuracy and median RTs (for correct responses) for 

each participant and each epoch, separately for high- and low-probability triplets. The 

mean accuracy was 95.19% (SD = 0.03%) in the Learning Phase of the task. Since high 

accuracy scores and the relatively low variance in samples of neurotypical participants 

can hinder the detection of learning (Vékony et al., 2020), we considered RTs to be a 

more appropriate measure of performance in the ASRT task. Therefore, we use RTs as 

our primary measures in this paper. Statistical learning scores were calculated as the 

difference in RTs between high- and low-probability triplets (i.e., RTs for low-probability 

triplets minus RTs for high-probability triplets). Higher scores indicated better 

learning/memory performance. General skill knowledge was defined as a general 

decrease in median RTs during practice (i.e., participants became faster throughout the 

task), irrespective of triplet types. Median RTs were calculated separately for each epoch 

in each phase. 

To evaluate statistical learning, we conducted repeated measures analyses of 

variance (ANOVAs) by contrasting statistical learning scores across the Learning Phase. 

To test general skill learning, we contrasted median RTs across the Learning Phase using 

repeated measures ANOVAs. As the main goal of the present paper is to investigate the 

consolidation of statistical and general skill knowledge, we only briefly report the results 

on learning in the main text and report the exact statistics in the Supplementary Materials. 

To evaluate the consolidation of the acquired statistical knowledge, we conducted 
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ANOVAs by contrasting statistical learning scores of the last epoch of the Learning Phase 

with those of the first epoch of Testing Phase. To evaluate the consolidation of general 

skill knowledge, we conducted repeated measures ANOVAs by contrasting median RTs 

of the last epoch of the Learning Phase with those of the first epoch of the Testing Phase. 

Greenhouse-Geisser epsilon (ε) correction was used when necessary. Original df values 

and corrected, two-tailed p values (if applicable) are reported together with partial eta-

squared (ηp
2) as the measure of effect size.  

As children and older adults are typically respond with slower RTs overall (e.g., 

Juhasz et al., 2019), we conducted additional ANOVAs on standardized RTs. To control 

for the effect of average RT differences across age groups on learning and consolidation 

of knowledge, we employed two different ways of standardization: (1) ratio scores and 

(2) log-transformed RT data. For calculating ratio scores, we transformed the data in the 

following way. We divided each participants’ raw RT values of each trial type and each 

epoch by their own median RT in the first epoch of the task (for a similar approach, see 

Horvath et al., 2020; Juhasz et al., 2019; Nitsche et al., 2003; Tóth-Fáber, Janacsek, et al., 

2021). This way, participants’ performance was around 1 at the beginning of the task and 

changed as the task progressed. We then calculated standardized learning and memory 

scores by subtracting standardized RTs for high-probability triplets from standardized 

RTs for low-probability triplets. Higher standardized scores indicated better 

learning/memory. General skill knowledge scores were standardized in an identical way: 

Each participants’ median RTs in Epoch 4 and Epoch 5 were divided by their median RT 

in the first epoch of the task. For log-transformed RT data, we applied a logN 

transformation on the trial-based raw RT data. Then, we computed the mean of log-

transformed RTs for each trial type and each epoch, separately for each participant. Log-

transformed statistical knowledge scores were calculated by subtracting log-transformed 

RTs for high-probability triplets from log-transformed RTs for low-probability triplets. 

Log-transformed general skill knowledge was calculated for each epoch using the mean 

of trial-based log-transformed RT data. For the sake of brevity, we only refer to the results 

of these ANOVAs in the main text where they are relevant in comparison to the results 

of raw RTs, and we report the exact statistics in the Supplementary Materials. 

Moreover, to explore consolidation in more detail, we fitted curves to the data of 

the Learning Phase and used the fitted parameters to predict statistical learning scores and 

general skill performance in the Testing Phase (see Adi‐Japha et al., 2014; Pan & Rickard, 

2015; Rickard, 2007). A linear function was fitted to the block-wise statistical learning 
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scores, and a power function was fitted to the block-wise general skill learning scores. 

Since some participants acquire statistical regularities quickly, showing high statistical 

learning early in the task, then maintaining their performance throughout the task, the 

slope of their learning trajectory is near zero. This leads to a low R2 value even when a 

linear function fits the data well. Residual standard errors (RSEs) are independent of the 

slope; therefore, they are better goodness-of-fit estimates in these cases. Hence, we report 

RSEs instead of R2 values, both for the statistical learning and general skill learning 

scores, for comparability. Smaller RSEs indicate better fit in both cases. 

Importantly, in previous studies that used curve fitting on learning data, a 

performance improvement (i.e., offline learning) was typically expected after an offline 

delay (Adi‐Japha et al., 2014; Pan & Rickard, 2015; Rickard, 2007). In these cases, using 

fitted parameters from a power or a linear function has been an appropriate approach to 

predict and test future performance (Pan & Rickard, 2015). Therefore, using curve fitting 

to test offline changes can work well for general skill learning in our study because offline 

learning is expected following the 24-hour delay. However, this approach may be less 

ideal for statistical learning as measured by the ASRT task because maintenance of 

performance (i.e., retention) may be expected instead of offline learning (e.g., Kóbor et 

al., 2017; Simor et al., 2019; Song et al., 2007b). Moreover, differences in variance across 

age groups can create additional challenges when curve fitting is used to test age-related 

differences in learning and consolidation: As variance can influence how well a function 

fits the data and how reliable the predicted performance is, differences in variance can 

hinder the comparability of predicted performance across age groups. Nevertheless, we 

report the curve fitting results to provide a more detailed picture of the consolidation of 

statistical and general skill knowledge across the lifespan using multiple approaches.  

 In conjunction with the frequentist analyses, we performed Bayesian mixed-

design ANOVAs and Bayesian paired-samples t-tests for the relevant comparisons. 

Bayesian mixed-design ANOVAs were run on the memory scores to test which factors 

determine performance. Here, we present Bayesian Model Averaging and the exclusion 

Bayes Factor (BFexclusion). BFexclusion values quantifies the change from prior to posterior 

odds and can be interpreted as the evidence in the data for excluding a given predictor 

from the model. Thus, values below 1 support the inclusion and values above 1 the 

exclusion of the given factor. Cauchy prior distribution was used for the ANOVA with a 

fixed-effects scale factor of r = 0.5, and a random-effects scale factor of r = 1. Moreover, 

we ran Bayesian paired-samples t-tests for comparing performance between the end of 
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the Learning Phase and the beginning of the Testing Phase, separately for each age group. 

Bayes factor (BF) was computed to assess the amount of evidence for the null-hypothesis 

of no offline change. The BF is a statistical technique that helps conclude whether the 

collected data favors the null-hypothesis (i.e., evidence for no difference between groups 

or variables) or the alternative hypothesis (i.e., evidence for differences); thus, the BF 

could be considered as a weight of evidence provided by the data (Wagenmakers et al., 

2011). One of the main benefits of calculating the BF is that for non-significant 

comparisons we can use the BF to conclude that the acquired evidence supports H0 rather 

than H1 (Dienes, 2011, 2014; Wagenmakers, 2007). BFs were calculated using JASP 

version 0.14 (Rouder, Speckman, Sun, Morey, & Iverson, 2009). Here we report BF01 

values where greater values support the null-hypothesis (no difference) over the 

alternative hypothesis. According to Wagenmakers et al. (2011), BF01 values between 1 

and 3 indicate anecdotal evidence, values between 3 and 10 indicate substantial evidence 

and values larger than 10 indicate strong evidence for H0. Values between 1 and 1/3 

suggest anecdotal evidence, values between 1/3 and 1/10 indicate substantial evidence, 

and values below 1/10 indicate strong evidence for H1. Values around 1 do not support 

either hypothesis. 

3. Results 

3.1. Are there age-related differences in the consolidation of statistical knowledge? 

Before testing the age-related differences in consolidation of statistical knowledge, we 

tested the potential age-related differences in statistical learning. Analysis on raw RT data 

in the Learning Phase showed better learning under the age of 13, whereas analysis on 

ratio scores revealed comparable learning from childhood to young adulthood, followed 

by decreased learning from the age of 30. We present the exact statistics in the 

Supplementary Materials. 

To test 24-hour consolidation of the acquired statistical knowledge, we contrasted 

statistical learning scores computed for the last epoch of the Learning Phase (Epoch 4) 

with the learning scores computed for the first of the Testing Phase (Epoch 5) and 

submitted these scores to a mixed-design ANOVA with EPOCH (Epoch 4 vs Epoch 5) 

as a within-subject factor and AGE GROUP as a between-subjects factor. The ANOVA 

revealed overall significant statistical knowledge (main effect of INTERCEPT: F(1, 246) 

= 309.24, p < 0.001, p
2 = 0.56) and significant differences in overall learning across age 
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groups (main effect of AGE GROUP: F(8, 246) = 2.91, p = 0.004, p
2 = 0.09). 

Importantly, statistical knowledge appears to be retained over the 24-hour delay period 

with no significant change between the end of the Learning Phase and the Testing Phase 

(main effect of EPOCH: F(1, 246) = 0.39, p = 0.53, p
2 = 0.002). Moreover, no age group 

differences emerged in the retention of the statistical knowledge (non-significant EPOCH 

× AGE GROUP interaction: F(8, 246) = 0.14, p = 0.997, p
2 = 0.005; all ps > .52): this 

suggests that all age groups retained the acquired knowledge over the 24-hour delay 

period (Fig. 5.2 and Fig. S5.1). The analysis of effects of the Bayesian mixed-design 

ANOVA showed that the main effect of EPOCH and the EPOCH × AGE GROUP 

interaction should be excluded from the model (see Table 5.2, and for model comparisons, 

see Table S5.1), corroborating the findings of the frequentist ANOVA. 

 To rule out the possible confounding effect of different average RTs across age 

groups on these results, we employed two ways of standardization, and we conducted two 

ANOVAs for ratio scores and log-transformed RT data, respectively (for details on the 

standardization process, see the Statistical analysis section). We submitted the 

standardized statistical learning scores to mixed-design ANOVAs with EPOCH (Epoch 

4 vs Epoch 5) as a within-subject factor and AGE GROUP as a between-subjects factor. 

The ANOVAs revealed identical results to the ANOVA computed on raw RT scores (for 

the exact statistics, see Table S5.7 and the accompanying text). The Bayesian mixed-

design ANOVAs on the standardized learning scores also supported these findings (for 

details, see Table S5.3-S5.4 and Table S5.8-S5.9), confirming no change in learning 

scores over the 24-hour delay period and no differences in this pattern across age groups. 

 To explore consolidation in more detail, we used a linear function to predict 

performance in the Testing Phase (for details, see the Statistical analysis section). RSEs 

were calculated separately for the age groups, and they were between 3.80 and 19.17 (M 

= 8.41), suggesting a generally good fit to the data. A difference score was calculated by 

subtracting the predicted statistical learning scores from the observed statistical learning 

scores. We submitted the difference scores to a mixed-design ANOVA with BLOCK (1-

5) as a within-subject factor and AGE GROUP as a between-subjects factor. Importantly, 

we found no significant age-related effect in this ANOVA: the difference score between 

the predicted and observed statistical learning scores was comparable across the age 

groups. Bayesian ANOVA further supported these results. For the exact statistics, see 

Table S5.13-S5.15. 



103 
 

 

Figure 5.2. Consolidation of statistical knowledge over the 24-hour offline period across age 

groups. RT statistical learning scores for the last epoch of the Learning Phase (Epoch 4, light 

gray bars) were contrasted with those for the first epoch of the Testing Phase (Epoch 5, dark gray 

bars). BF01 values were obtained by paired-samples t-tests for this contrast separately for each age 

group. All reported BF01 values indicate substantial evidence for the null-hypothesis (BF01 > 3), 

providing evidence for comparable knowledge in Epoch 4 and Epoch 5 in each age group. Error 

bars denote the standard error of mean (SEM). 

Table 5.2. Analysis of effects of Bayesian ANOVA for consolidation of statistical knowledge. 

Effects P(incl) P(incl|data) BFexclusion 

Epoch 0.400 0.104 8.608 

Age group 0.400 0.800 0.250 

Epoch × Age group 0.200 3.382e-4 246.000 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

 

3.2. Are there age-related differences in the consolidation of general skill knowledge? 

Similar to statistical learning, before comparing the age groups on the consolidation of 

general skill knowledge, we first tested the age-related differences in general skill 

learning. Analysis on raw RT data in the Learning Phase revealed highest general skill 

learning performance in the youngest age group. For details, see the exact statistics in the 

Supplementary Materials. 
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We tested the consolidation of general skill knowledge (defined as median RTs 

changes) over the delay period with a mixed-design ANOVA on median RTs (i.e., RTs 

irrespective of the probabilities of events) with EPOCH (Epoch 4 vs Epoch 5) as a within-

subject factor and AGE GROUP as a between-subjects factor. Our analysis found that the 

median RTs significantly decreased over the 24-hour delay (main effect of EPOCH: F(1, 

246) = 107.92, p < 0.001, p
2 = 0.31): participants responded faster in the Testing Phase 

compared to the end of the Learning Phase (significant speed-up in all age groups: all ps 

< 0.014, except for the 14-15-year-old group, where p = 0.080, Fig. 5.3). The amount of 

speed-up over the delay period, however, was not uniform across the age groups (EPOCH 

× AGE GROUP interaction: F(8, 246) = 2.26, p = 0.02, p
2 = 0.07). A follow-up ANOVA 

on the offline change score (i.e., RTs in Epoch 4 minus RTs in Epoch 5) showed that the 

7-8-year-olds exhibited the greatest speed-up over the delay, significantly differing from 

the speed-up of almost all other age groups (ps < 0.026; 7-8-year-old vs 9-10-year-old 

groups: p = 0.068; Fig. S5.2). The other age groups' median RT changes over the delay 

period were not significantly different from one another (all ps > 0.062). Bayesian mixed-

design ANOVA also supported the inclusion of the main effect of EPOCH and the 

EPOCH × AGE GROUP interaction (Table 5.3, and for model comparisons, see Table 

S5.2). 

 Similarly to the statistical learning scores, we ran two ANOVAs on standardized 

RTs as well, one for ratio scores and one for log-transformed RT data (for details on the 

standardization process, see the Statistical analysis section). Both ANOVAs revealed a 

significant RT speed-up over the delay period, however, in contrast to the ANOVA on 

raw RT scores, the age groups did not differ from each other in the amount of speed-up 

either concerning ratio scores or log-transformed RT data (for the exact statistics, see 

Table S5.10, Figure S5.3 and the accompanying text). The Bayesian mixed-design 

ANOVAs also supported the inclusion of the main effect of EPOCH and the exclusion of 

the EPOCH × AGE GROUP interaction, suggesting a uniform speed-up over the delay 

period across the age groups (for details, see S5.5-S5.6 and S5.11-S5.12). These results 

suggest that the group differences observed in the raw average RT analyses above were 

largely driven by some age groups being on average slower in the task than other groups; 

controlling for this confound eliminated the group differences in the consolidation of 

general skill knowledge over the delay period.  

 Similarly to the statistical learning scores, we further examined the magnitude of 

offline gains and possible age-related differences by predicting future general skill 
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performance in the Testing Phase with a power law function (for details, see the Statistical 

analysis section). RSEs were calculated separately for the age groups, and they were 

between 4.32 and 20.54 (M = 10.53), suggesting a generally good fit to the data. A 

difference score was calculated by subtracting the predicted RT data from the observed 

RT data. We submitted the difference scores to a mixed-design ANOVA with BLOCK 

(1-5) as a within-subject factor and AGE GROUP as a between-subjects factor. We found 

no significant age-related effect: the difference between the predicted and observed 

performance was comparable across the age groups. Bayesian ANOVA further supported 

these results. For the exact statistics, see Table S5.16-S5.18. 

 

Figure 5.3. Consolidation of general skill knowledge over the 24-hour offline period across 

age groups. Average RT values for the last epoch of the Learning Phase (Epoch 4, light gray 

bars) were contrasted with those for the first epoch of the Testing Phase (Epoch 5, dark gray bars). 

BF01 values were obtained by paired-samples t-tests for this contrast separately for each age 

group. BF01 values for all age groups except for the 61-76-year-olds indicate substantial evidence 

for the alternative hypothesis (BF01 < 0.33) providing evidence for offline learning over the 24-

hour delay. BF01 value obtained for the 61-76-year-olds could not provide evidence for either the 

null or the alternative hypotheses. Error bars denote the SEM. 
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Table 5.3. Analysis of effects of Bayesian ANOVA for consolidation of general skill knowledge. 

Effects P(incl) P(incl|data) BFexclusion 

Epoch 0.400 0.548 1.067e -17  

Age group 0.400 0.548 5.163e -29  

Epoch × Age group 0.200 0.452 1.214  

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

3.3. Testing possible confounds influencing the consolidation of statistical and general 

skill knowledge 

To test the possible confounding effect of averaging over the last five blocks of the 

Learning Phase and the first five blocks of the Testing Phase (Pan & Rickard, 2015), we 

contrasted performance in the last block of the Learning Phase (Block 20) and in the first 

block of the Testing Phase (Block 21). The analysis revealed that some degree of 

forgetting might be present as statistical learning score in Block 21 was marginally lower 

than that in Block 20. Bayesian analysis was not conclusive, the Bayes Factor was around 

1, not supporting either the null or the alternative hypothesis. Crucially, age-related 

differences were not detected either with the frequentist or with the Bayesian analysis. 

For the exact statistics, see Table S5.19-S5.20 and the accompanying text. 

It is important to note that the analysis of block-wise data in the ASRT task should 

be interpreted carefully due to the relatively low number of trials. Specifically, statistical 

learning scores are calculated as difference scores between the high- and low-probability 

trials after excluding the first five random practice trials at the beginning of the block, 

erroneous responses as well as trills and repetitions from the 85 trials that are presented 

in a block. Hence, aggregated (mostly epoch-level) data has been used to characterize 

learning in the ASRT task since its inception because it enables to track the trajectory of 

learning while simultaneously decreasing the effect of noise in the learning scores to an 

acceptable level (Howard, & Howard, 1997; Song et al., 2007a, 2007b).  

Moreover, to test whether practice-dependent changes influenced the offline 

learning of general skill knowledge over the 24-hour offline delay, we compared 

performance in the last block of the learning phase (Block 20) and the first block of the 

Testing Phase (Block 21). Overall, participants responded faster in Block 21 compared to 

Block 20, with similar speed-up across the age groups, and the amount of speed-up was 



107 
 

comparable across the age groups. This suggests that the offline learning of general skill 

knowledge over the delay period was not due to further practice-dependent changes in 

the Testing Phase. For the exact statistics of this analysis, see Table S5.21 and the 

accompanying text. 

We also tested whether offline learning of general skill knowledge in terms of RTs 

could be influenced by decreased accuracy over the offline period. On the group level, 

mean accuracy scores increased over the offline delay, but the level of improvement was 

not comparable across the age groups. Significant offline learning was only detectable in 

the 7-8-year-old and 11-13-year-old groups. These results suggest that, in terms of 

accuracy scores, none of the age groups showed forgetting, therefore, offline learning in 

terms of RTs cannot be explained by a decreased accuracy over the offline period. For 

exact statistics, see Supplementary Materials. 

4. Discussion 

The present study examined the 24-hour consolidation of statistical and general 

skill knowledge in a large sample of participants between the age of 7 and 76 using the 

same experimental design across the sample. Based on statistical learning scores 

computed from raw RT data, we showed retained statistical knowledge in all age groups. 

Analyses on standardized RT data and Bayesian analyses (both on raw RTs and 

standardized RTs) further corroborated these results. As for general skill knowledge, 

while the analyses on raw RT data suggested offline improvement that was the greatest 

in the 7-8-year-olds, results on standardized RT data revealed offline gains in all age 

groups with a uniform speed-up across the sample. Bayesian analyses of general skill 

consolidation also confirmed this uniform speed-up. 

Our results on age-invariance in the retention of statistical knowledge are in line 

with prior smaller scale studies that focused on one age group only or contrasted 

performance in a few age groups. Specifically, in groups of children and adolescents, 

successful retention of statistical regularities has been shown following a 16-hour 

(Nemeth, Janacsek, Balogh, et al., 2010; Takács et al., 2018), 24-hour (Hedenius et al., 

2013), three-day (Hedenius et al., 2011) and even a one-year offline period (Tóth-Fáber, 

Janacsek, et al., 2021). Offline learning has also been found over a 24-hour delay in a 

group of 9-13-year-old participants (Hedenius et al., 2020). Successfully retained 

knowledge had been consistently demonstrated in young and middle adulthood as well 
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over various offline delays ranging from hours to even one year (e.g., Arciuli & Simpson, 

2012; Kóbor et al., 2017; Meier & Cock, 2014; Nemeth, Janacsek, Király, et al., 2013; 

Romano et al., 2010). 

However, differences in consolidation between children and adults have been 

suggested in specific areas, such as the contribution of sleep to consolidation. Fischer et 

al. (2007) compared the consolidation of statistical knowledge in 7-11-year-old children 

and young adults after offline periods of overnight sleep or daytime wakefulness. Adults 

showed better retention of statistical knowledge following sleep compared to the wakeful 

offline period, whereas children showed an opposite pattern with better retention after 

daytime wakefulness than after overnight sleep. Notably, children showed overall higher 

learning than adults and this difference in the pre-sleep performance level could have 

strongly confounded the results on consolidation (Wilhelm et al., 2012). Our study was 

not designed to test the effect of sleep on consolidation across the lifespan: the 24-hour 

delay employed in our study included both periods of overnight sleep and daytime 

wakefulness. In theory, an opposite pattern such as the one observed in the study of 

Fischer et al. (2007) could have resulted in overall similar retention performance of 

statistical knowledge across age groups. Importantly, we chose the 24-hour delay because 

that could provide a clearer picture of everyday functioning of individuals as it 

incorporates both the effects of sleep and daytime wakefulness. Overall, consolidation of 

statistical knowledge seems to be similar across childhood and adulthood, and previously 

found developmental differences might be explained by confounding factors, such as 

differences in sleep. 

Previous studies investigating the consolidation of statistical knowledge in aging 

showed somewhat mixed results. Most studies suggested intact consolidation of statistical 

knowledge in elderly adults. Comparable retention has been shown in younger and older 

adults after a 12-hour offline period, irrespective of whether that period included 

overnight sleep or daytime wakefulness (Nemeth, Janacsek, Londe, et al., 2010). Retained 

knowledge has also been found following a one-year delay (Romano et al., 2010). In 

contrast, Nemeth and Janacsek (2011) have found forgetting of statistical knowledge in 

older adults compared to successful retention in young adults, irrespective of the length 

of the offline delay (12-hour, 24-hour or one-week). Our results align with the former 

studies, providing substantial evidence for retained statistical knowledge over the 24-hour 

delay in older adults, as indicated by the Bayesian analyses (BF01 = 4.44). The mixed 

findings across studies could be attributed to differences in experimental designs, for 
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example, different lengths of the learning period could lead to a varying degree of fatigue, 

which can potentially affect consolidation. Future studies may systematically test how 

such differences affect consolidation across age groups.  

During learning, we extract the regularities from the environment and encode 

them into initially fragile memory representations. During consolidation, the recently 

acquired representations undergo a progressive stabilization, creating long-term memory 

representations (Walker, 2005). Although these two processes are intertwined and depend 

on each other, considering the age-variant lifespan trajectory of statistical learning based 

on previous studies (Janacsek et al., 2012; Juhasz et al., 2019; Lukács & Kemény, 2015) 

and the age-invariant lifespan trajectory of consolidation of statistical knowledge based 

on the present study, we can conclude that these two processes show a dissociation. 

Similar results have been demonstrated before in atypical development. In Tourette 

syndrome, intact consolidation has been shown to accompany enhanced learning (Takács 

et al., 2018), whereas intact learning and impaired consolidation have been found in 

developmental dyslexia (Hedenius et al., 2021). Our results are in line with these prior 

ones as we showed a dissociation between learning and consolidation of statistical 

knowledge in a neurotypical population: while learning varied with the function of age, 

consolidation did not. This suggests that, at least partially, distinct mechanisms and neural 

networks underlie the acquisition and consolidation of statistical knowledge across the 

lifespan. 

To the best of our knowledge, no theoretical framework has been proposed for the 

lifespan trajectory of consolidation of statistical knowledge. Here, we found comparable 

retention of statistical knowledge in all ages from 7 to 76 years, which would suggest an 

age-invariance model of consolidation of such knowledge. Based on the present 

behavioral results, we can also make assumptions for the neural networks that underlie 

the consolidation of statistical knowledge, at least when measured with the ASRT task. 

As mentioned in the introduction, in their model for statistical learning, Janacsek et al. 

(2012) proposed a shift from detecting raw probabilities to relying more on internal 

interpretations of events, which then leads to decreased statistical learning performance 

in adults compared to children under the age of 12. On the neurobiological level, the 

competition model (Janacsek et al., 2012) related this shift to the protracted maturation 

of the hippocampus and prefrontal cortex. While these brain regions have been suggested 

to underlie the development of internal models, basal ganglia, particularly the striatum, 

have been linked to the detection of raw probabilities. Albouy, King, Maquet, and Doyon 
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(2013) proposed a model for a related process, that is, motor sequence learning and 

consolidation. According to this model, in healthy young adults, during the acquisition of 

a motor sequence, the hippocampus and the striatum show an antagonistic dynamic, 

which is presumably mediated by the prefrontal cortex. In contrast, during consolidation 

and retest, instead of a competitive dynamic, the striatum and the hippocampus seem to 

function cooperatively. According to Albouy et al. (2013), striatal activity supports time-

dependent maintenance in performance (i.e., retention), whereas the hippocampus 

supports sleep-dependent enhancement in performance (i.e., offline learning), at least in 

young adults. In line with this dissociation, Schapiro et al. (2019) also showed the 

involvement of the hippocampus in the sleep-dependent consolidation of a motor 

sequence in middle aged adults. Converging our behavioral results and the model of 

Albouy et al. (2013), we can speculate that consolidation of statistical knowledge was 

likely more reliant on the striatum and its circuits as we found retention of statistical 

knowledge in all age groups. This would be consistent with the notion that the 

consolidation of statistical knowledge, at least when measured with the ASRT task, is 

independent of sleep (Nemeth, Janacsek, Londe, et al., 2010; e.g., Song et al., 2007b). It 

is important to note that in the present study, we employed a visuomotor task involving 

temporally distributed non-adjacent statistical regularities, therefore the conclusion of 

age-invariance is restricted to these regularities. Considering other, related processes, 

such as motor (sequence) learning, usually measured with deterministic SRT and finger 

tapping tasks, a different trajectory might emerge. As stated above, the consolidation of 

motor (sequence) knowledge appears to be sleep-dependent, resulting in offline gains 

over the delay, due to the involvement of the hippocampus (Albouy et al., 2008). Due to 

sleep-dependency and the underlying neural circuits (i.e., the hippocampus showing 

protracted development (Keresztes, Ngo, Lindenberger, Werkle-Bergner, & Newcombe, 

2018)), age-variance may be expected for the consolidation of motor (sequence) 

knowledge. Indeed, empirical evidence supports this notion (Prehn-Kristensen et al., 

2009; Roig, Ritterband-Rosenbaum, Lundbye-Jensen, & Nielsen, 2014; Urbain, 

Houyoux, Albouy, & Peigneux, 2014, but see Pan & Rickard, 2015; Rickard & Pan, 

2017). In contrast, the time-dependent consolidation of statistical knowledge seems to be 

age-invariant, potentially due to the greater reliance on the striatum that matures early in 

development. To sum up, the cooperation of the striatum and the hippocampus could be 

responsible for the consolidation of the acquired knowledge and based on our results, the 

striatum may be more prominent in this interaction when consolidation is independent of 
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sleep, as is the case for the statistical knowledge tested in the present study. Nevertheless, 

it is important to note that this is highly tentative and further neuroimaging studies are 

needed to corroborate it. 

Previous development and aging studies have highlighted the importance of 

baseline RT differences across the lifespan. It is well-established that children and older 

adults show slower RTs compared to young adults (e.g., Janacsek et al., 2012; Juhasz et 

al., 2019). These differences can confound performance as children and older adults have 

more room to improve, meaning that as their baseline RTs are slower, they can 

demonstrate higher gains in learning. Juhasz et al. (2019) focused on general skill learning 

in the sample used in the present study. According to their results, general skill learning 

is heightened in childhood, but this could not be explained by the ‘more room to improve’ 

concept. Superior general skill learning in 7-8-year-olds persisted across different 

analysis approaches which controlled for the baseline speed differences. Our results on 

raw RT data showed that 7-8-year-olds are also superior in the consolidation of general 

skill knowledge as they exhibited greater offline improvement than the other age groups. 

Importantly, however, this could not be confirmed by the analyses of standardized RT 

data where we controlled for the average speed differences across the age groups. Hence, 

the greater offline speed-up compared to other age groups seen on raw RT data is possibly 

due to the generally slower responses in the 7-8-year-olds. Thus, while general skill 

learning seems to be age-variant with heightened learning in childhood (Juhasz et al., 

2019), consolidation of such knowledge seems to be age-invariant with similar offline 

improvement in all age groups, based on the results of the current paper. 

 Prior studies have found inconsistent results on the consolidation of general skill 

knowledge in the elderly population. Based on these studies, the length of the offline 

delay seems to influence the magnitude of consolidation in older adults (Nemeth & 

Janacsek, 2011; Nemeth, Janacsek, Londe, et al., 2010; Romano et al., 2010). Concerning 

the prior studies, only Nemeth and Janacsek (2011) employed a 24-hour offline delay. 

They have found neither offline improvement nor forgetting in older adults, general skill 

knowledge did not change over the offline period. In contrast, we found offline 

improvement in 61-76-year-olds following a 24-hour delay and the magnitude of offline 

gains did not differ significantly between younger and older adults. However, it is worth 

noting that Bayesian evidence for offline gains in general skill knowledge was around 1 

in the 61-76-year-old group, which means that we did not find evidence for either the null 
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or the alternative hypothesis. Hence, further research is warranted to explore the 

consolidation of general skill knowledge in older adulthood. 

A considerable amount of research has focused on the changes of different 

cognitive functions across the lifespan. The lifespan trajectory of several cognitive 

functions has been described as an inverted U-shape: these functions continuously mature 

through childhood and adolescence, then peak in young or middle adulthood and decline 

over the course of aging (e.g., Alloway & Alloway, 2013; Zelazo et al., 2004). Some 

functions peak in childhood and starts to decline as soon as adolescence or young 

adulthood (e.g., Janacsek et al., 2012; Johnson & Newport, 1989; Juhasz et al., 2019), 

whereas some functions remain intact in late adulthood as well (e.g., Ikier et al., 2008). 

The consolidation of statistical regularities seems to follow a different, age-invariant 

trajectory: the acquired statistical knowledge is comparably retained in all age groups 

from the age of 7 to 76 years. Consolidation of general skill knowledge also seems to 

follow an age-invariant trajectory: in this case, the offline improvement over the delay 

period is comparable across all age groups. Since the oldest adult in our study was 76 

years old, future studies could provide further insights into how aging affects 

consolidation by involving individuals beyond this age as well. 

One limitation of our study is the lack of interference design, which can be 

important for consolidation studies (Brashers-Krug, Shadmehr, & Bizzi, 1996; 

Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). Consolidation can 

be defined both as stabilization of the acquired knowledge—usually evident as no change 

in performance or offline learning during the delay period—and as resistance to 

interference. A previous study with the ASRT task employed an interference design: 

Kóbor et al. (2017) investigated the one-year consolidation of statistical knowledge in 

healthy young adults. They showed successful retention as well as a resistance to 

interference. Hence, successful consolidation was expressed both by retention and 

resistance to interference in the same group of participants. Employing an interference 

design might also be relevant from a developmental perspective. Dorfberger, Adi-Japha, 

and Karni (2007) showed similar consolidation in childhood and adulthood on the 

behavioral level using a motor learning task, however, a difference emerged concerning 

interference. Children seemed to be less susceptible to subsequent interference compared 

to adults, suggesting age-related differences in this aspect of consolidation. Therefore, 

future studies should employ an interference design to shed further light on the lifespan 

trajectory of memory consolidation. 
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Conducting large-scale studies involving participants from age groups across the 

lifespan is essential to characterize the development and aging of any cognitive functions. 

Inferences made from different sets of individual studies have a risk of different 

paradigms and designs confounding the conclusions. Here, we employed a lifespan 

approach in a cross-sectional design involving participants from 7 to 76 years using the 

same task across the whole sample. In conclusion, the present study demonstrated 

comparable consolidation of statistical and general skill knowledge following a 24-hour 

offline delay across the lifespan, from 7-year-olds to 76-year-olds. Our study offers 

evidence for age-invariance in these key cognitive functions. 
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VI. General discussion 

The dissertation aimed to investigate how the changes in fronto-striatal networks – 

considering both typical and atypical development – lead to changes in procedural 

memory. Across the presented four studies, we investigated this question from different 

viewpoints. In Study 1, we assessed a childhood-onset neurodevelopmental disorder with 

alterations in the fronto-striatal networks, namely Tourette syndrome, and explored 

different regularities within the procedural memory system. While Study 1 focused on 

the acquisition of such regularities, in Study 2, we went one step further and examined 

whether retention changes as a result of altered fronto-striatal networks. Thus, Study 2 

examined the short- and long-term consolidation of different regularities in Tourette 

syndrome. To get a more detailed picture of the procedural memory consolidation 

processes, Study 3 tested the one-year retention of different regularities in typically 

developing children and adolescents. Finally, to gain a deeper understanding of 

developmental processes, in the last study, we went beyond past research involving only 

a few age groups (i.e., children vs. young adults or young vs. old adults) by taking a 

lifespan approach. Hence, Study 4 aimed to shed light on the lifespan differences in 

procedural knowledge consolidation in a large sample of participants aged 7 to 76 years. 

In the next section, we summarize the main findings of each study. 

1. Summary regarding atypical development 

1.1. Is the learning of probability-based and serial order-based regularities enhanced in 

Tourette syndrome? 

In Study 1, we examined how probability-based and serial order-based regularities within 

the procedural memory system are affected in TS and whether they contribute to the 

possible procedural hyperfunctioning proposed by previous studies (Dye et al., 2016; 

Shephard et al., 2019; Takács et al., 2018; Walenski et al., 2007). Employing the cued 

version of the ASRT task made it possible to investigate these two regularities 

simultaneously. Considering probability-based regularities, we found enhanced 

sensitivity in TS: children with TS extracted these regularities faster than their typically 

developing peers. In contrast, the acquisition of serial order-based regularities was 

impaired in TS: children with TS did not learn these regularities, whereas typically 

developing participants did. 



115 
 

Enhanced sensitivity to probability-based regularities in TS is in line with the prior 

studies proposing procedural hyperfunctioning in the disorder (Shephard et al., 2019; 

Takács et al., 2018). Takács et al. (2018) found enhanced learning of statistical 

regularities in TS employing the uncued, original version of the ASRT task. Hence, a 

speeded extraction of such regularities in TS is present in the uncued and cued version of 

the task as well. Shephard et al. (2019) also suggested procedural hyperfunctioning in TS: 

children with TS showed difficulties in the transition from sequence to non-sequence 

blocks in a serial reaction time task. 

The enhanced sensitivity to probability-based regularities in TS also falls in line 

with prior findings suggesting procedural hyperfunctioning in the disorder using 

language-based tasks (Dye et al., 2016; Walenski et al., 2007). The extraction of complex 

statistical regularities is fundamental in language acquisition and processing, such as 

detecting word boundaries (Saffran et al., 1996) and phrase boundaries (Thompson & 

Newport, 2007). In the study of Dye et al. (2016), participants solved a non-word 

repetition task, which involves the rule-governed decomposition and recomposition of 

the words, which is influenced by the phonotactical constraints of the language and, 

therefore, by statistical regularities (Coady & Evans, 2008). Walenski et al. (2007) 

showed empirical evidence for the speeded processing of regular, rule-governed past 

tenses in TS. In contrast, the production of irregular past tenses was comparable between 

the TS and control groups. The production of rule-governed past tenses is also related to 

statistical regularities. Enhanced procedural functions have manifested as speeded tool 

naming as well, while reaction times for naming animals were similar in the TS and 

control groups. Naming objects is not clearly related to statistical regularities, but it is 

possible that enhanced statistical learning has an additive effect, which results in speeded 

tool naming. 

The impairment of the acquisition of serial order-based regularities in TS is also 

not without precedent. Avanzino et al. (2011) employed a finger-tapping task with a 

deterministic sequence and showed impaired performance in TS children. Palminteri et 

al. (2011) employed high and minimal reward conditions in a motor learning task and 

showed enhanced learning in the high reward condition and impaired learning in the 

minimal reward condition. As our task did not involve rewards, our result showing 

impaired learning of serial order-based regularities is in line with the results of Palminteri 

et al. (2011) on impaired learning in the minimal reward condition. 
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1.2. Is the consolidation of probability-based and serial order-based regularities robust 

in Tourette syndrome? 

The goal of Study 2 was to examine the consolidation of probability-based and 

serial order-based regularities over a short-term (five-hour) and long-term (one-year) 

offline delay in children with TS and typically developing peers. Employing a one-year-

long offline period is rare in laboratory studies, and incorporating a long offline period 

enhances the ecological validity of the findings: acquiring and retaining skills happen 

over a longer time than the usual time scale of a lab visit. Here, both groups showed 

successful retention of probability-based regularities following the offline periods and 

retention performance was comparable between the groups. The retention of serial order-

based regularities could not be investigated in this study as children with TS did not 

acquire these regularities; therefore, their consolidation could not be reliably tested here. 

Successful one-year retention of probability-based regularities has been shown in 

neurotypical adults (Kóbor et al., 2017; Romano et al., 2010) and in typically developing 

children as well (Study 3 of the present dissertation). In TS, prior to our study, only the 

short-term, 16-hour retention was investigated: Takács et al. (2018) used the uncued 

version of the ASRT task and in conjunction with enhanced statistical learning, greater 

forgetting has been shown. Importantly, as the authors also suggest, no firm conclusions 

can be drawn from this study due to the learning differences between the TS and control 

groups. After controlling for learning differences, the groups showed comparable 

retention of statistical knowledge. To sum up, we replicated the results of Takács et al. 

(2018) on (relatively) short-term retention and went beyond this study by showing that 

long-term (one-year) retention is also robust in TS.  

We need to note the discrepancy in the results of Study 1 and 2. In Study 2, we 

found intact, but not enhanced learning of probability-based regularities in TS, which is 

somewhat different compared to the findings of Study 1, where we found a speeded 

extraction of such regularities. Importantly, in Study 2, we used a subset of the TS 

children from Study 1, but the control groups differed due to difficulties assessing the 

original control group one year later. Throughout the studies of the dissertation, we used 

Bayesian analyses to check whether our null findings (i.e., no group differences) were 

corroborated by Bayes Factors or due to the lack of power. We did not run Bayesian 

analyses when conducting Study 1, but we have now filled this gap here by analyzing the 

data this way as well. Bayesian mixed-design ANOVAs were run separately for the 

learning scores of probability-based regularities and serial-order regularities. Regarding 
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probability-based regularities, anecdotal evidence was found for the Epoch × Group 

interaction (Table 6.1 and 6.2), supporting the results of the frequentist analyses (pp. 29). 

As for serial-order regularities, the lack of learning in the TS group was corroborated by 

the Bayesian analyses as shown by the anecdotal evidence for the main effect of Group 

(Table 6.3 and 6.4). Nevertheless, the lack of clear replication of the enhanced sensitivity 

to probability-based regularities suggests that we need to handle these results with caution 

and future studies are warranted to replicate and further examine these questions. 

 

Table 6.1. Analysis of effects of Bayesian ANOVA for learning of probability-based regularities. 

Effects P(incl) P(incl|data) BFinclusion 

Epoch 0.400 0.079 0.092 

Group 0.400 0.337 0.562 

Epoch × Group 0.200 0.065 2.261 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFinclusion column shows the inclusion Bayes Factors. BFinclusion values below 1 support the 

exclusion and values above 1 the inclusion of the given factor. 

Table 6.2. Bayesian model comparisons for learning of probability-based regularities. 

Models  P(M) P(M|data) BFM BF10 error % 

Null model (incl. subject)   0.200  0.549  4.864  1.000    

Group   0.200  0.308  1.780  0.561  2.015  

Epoch + Group + Epoch × Group  0.200  0.065  0.276  0.118  2.606  

Epoch   0.200  0.050  0.211  0.091  0.489  

Epoch + Group  0.200  0.029  0.118  0.052  1.413  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF10 column the Bayes factors for 

each model compared to the null model. BF10 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H1. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H0. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 
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Table 6.3. Analysis of effects of Bayesian ANOVA for learning of serial-order regularities. 

Effects P(incl) P(incl|data) BFinclusion 

Epoch 0.400 0.152 0.185 

Group 0.400 0.664 2.146 

Epoch × Group 0.200 0.026 0.254 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFinclusion column shows the inclusion Bayes Factors. BFinclusion values below 1 support the 

exclusion and values above 1 the inclusion of the given factor. 

Table 6.4. Bayesian model comparisons for learning of serial-order regularities. 

Models  P(M) P(M|data) BFM BF10 error % 

Null model (incl. subject)   0.200  0.261  1.409  1.000    

Group   0.200  0.561  5.109  2.153  1.034  

Epoch + Group  0.200  0.103  0.461  0.397  1.701  

Epoch   0.200  0.049  0.206  0.188  3.646  

Epoch + Group + Epoch × Group  0.200  0.026  0.108  0.101  1.534  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF10 column the Bayes factors for 

each model compared to the null model. BF10 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H1. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H0. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

2. Summary regarding typical development 

To discover any potential developmental impact on procedural memory consolidation 

processes, Study 3 and 4 focused on typical development, examining 9-15-year-old 

children and adolescents in Study 3 and employing a lifespan approach with participants 

aged between 7 and 76 years in Study 4. These findings could help develop a theoretical 

model for age-related changes in procedural memory consolidation. 

 

2.1. Is the one-year consolidation of probability-based and serial order-based 

regularities successful in typically developing children and adolescents? 

Study 3 examined the one-year consolidation of probability-based as well as serial order-

based regularities in a sample of children and adolescents aged 9-15 years. We chose a 
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one-year offline period to overcome the limitation rooted in the usual time scales of 

laboratory studies and to enhance the ecological validity of our findings. Retained 

knowledge of both regularities has been shown: participants successfully acquired the 

regularities, which then were resistant to forgetting over a one-year delay. These results 

were corroborated by Bayesian statistics as well, which further strengthens the evidence 

for successful one-year retention. Our results are in line with previous studies using 

shorter delays varying from hours to 1-week. For probability-based knowledge, retention 

was shown following an 11-hour delay (Fischer et al., 2007). For serial order-based 

knowledge, Desmottes et al. (2017) demonstrated offline learning after 24-hour and 1-

week delays. Using the uncued ASRT task, several studies have found retained 

knowledge over relatively short-term offline periods (Hedenius et al., 2011; Nemeth, 

Janacsek, Balogh, et al., 2010; Takács et al., 2018) and one showed offline learning after 

a 24-hour delay (Hedenius et al., 2021). Hence, converging evidence suggest that in 

typical development, retention of procedural knowledge is successful from hours to up to 

a year. 

Combining the results of Study 3 and of prior studies (Kóbor et al., 2017; Romano 

et al., 2010), we can get insight into the developmental trajectory of procedural memory 

consolidation. We tested consolidation in a sample of 9-15-year-olds and prior studies 

tested consolidation using the uncued ASRT task in healthy young adults (Kóbor et al., 

2017; Romano et al., 2010). Our results are in line with the findings of these studies, 

suggesting that retention is comparable in childhood and adulthood in typical 

development. Moreover, the lack of correlation between age and retention in our sample 

also points towards the direction of developmental invariance in procedural memory 

consolidation. Nonetheless, the results of Study 3 and prior studies can only provide 

indirect evidence. Hence, studies are needed that directly investigate this question using 

the same experimental design across age groups, as we aimed to do so in Study 4. 

 

2.2. Does the consolidation of procedural knowledge follow an age-variant trajectory 

across the lifespan? 

To overcome the limitation of previous studies comparing only two or a few age groups, 

in Study 4, we tested the 24-hour consolidation of statistical and general skill knowledge 

in a cross-sectional design with participants between the ages of 7 and 76 years. This 

lifespan design can help us draw a more sophisticated developmental curve on procedural 

memory consolidation. Considering statistical knowledge, both raw and standardized RT 
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data showed retained knowledge in all age groups, using both frequentist and Bayesian 

analyses. Regarding general skill knowledge, the analyses on raw RT data showed offline 

learning in all age groups, however, offline gain was significantly higher in the 7-8-year-

olds than in the other age groups. Results on standardized RT data also suggested offline 

learning in all age groups, however, contrast to raw RT data, the offline gain was similar 

across the age groups. The uniform speed-up was corroborated by Bayesian analyses as 

well. Comparable retention of statistical knowledge across the age groups is in line with 

the results of Study 3 and with prior studies finding successful retention across various 

offline delays from childhood to old adulthood (e.g., Arciuli & Simpson, 2012; Hedenius 

et al., 2021; Hedenius et al., 2013; Kóbor et al., 2017; Nemeth, Janacsek, Király, et al., 

2013), and with the findings of Study 4, direct evidence for age-invariant retention of 

statistical knowledge was provided. 

3. Overall implications 

To summarize the findings of the four studies, we can conclude that changes in the fronto-

striatal networks might influence learning as shown by age-variant statistical learning 

across the lifespan (Janacsek et al., 2012) and by enhanced statistical learning in TS 

(Study 1). In contrast, retention of the acquired knowledge might not be influenced by 

changes in the fronto-striatal networks as consolidation is not altered in TS (Study 2) and 

age-invariant across the lifespan (Study 3 and 4). In the following section, I discuss the 

theoretical, methodological, and clinical relevance of the presented studies. 

3.1. Theoretical implications of the presented studies 

From a broader viewpoint, both Study 3 and 4 focused on the developmental trajectory 

of procedural memory consolidation. In Study 3, we indirectly investigated this question, 

whereas Study 4 directly examined the lifespan trajectory in a cross-sectional design. The 

results pointed to the same direction: the consolidation of statistical knowledge seems to 

be age-invariant across the lifespan. 

As mentioned before, to the best of our knowledge, no theoretical model has been 

proposed to describe the lifespan trajectory of the consolidation of statistical knowledge, 

while the lifespan trajectory of statistical learning has been described with three different 

models (for a review, see Zwart et al., 2019). Janacsek et al. (2012) introduced the 

competition model to characterize the development of statistical learning. They proposed 

that during adolescence, a shift occurs from detecting raw probabilities to relying rather 
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on internal models, which results in a decreased statistical learning performance in 

adulthood than in childhood. On the neural level, detecting raw probabilities is related to 

the basal ganglia, particularly to the striatum, whereas internal models are rooted in the 

hippocampus and in the prefrontal cortex. According to the competition model, the early 

maturation of the striatum and the protracted development of the hippocampus and 

prefrontal cortex might explain the shift and the age variance in statistical learning 

(Janacsek et al., 2012). 

Regarding the development of consolidation of statistical knowledge, no model 

has been proposed. Albouy et al. (2008) described a model for the consolidation of a 

related process, that is, motor sequence learning. They showed that in neurotypical young 

adults, the hippocampus and the striatum show an antagonistic relationship during the 

acquisition of a motor sequence and this dynamic is possibly mediated by the prefrontal 

cortex. During consolidation, however, the competitive dynamic is replaced by a 

cooperative dynamic. Relatedly, striatal activity seems to support the time-dependent 

maintenance in performance, that is, retention, while hippocampal activity seems to 

support the sleep-dependent enhancement in performance, that is, offline learning, at least 

in young adults (Albouy et al., 2008). Based on our behavioral results and the model of 

Albouy et al. (2008), tentative assumptions can be made for the neural network underlying 

the consolidation of statistical knowledge. We discovered time-dependent maintenance 

of statistical knowledge across the lifespan with comparable performance in all age 

groups, which suggests that this cognitive process might be more reliant on the striatum, 

which matures early in life. Consistently, the consolidation of statistical knowledge, at 

least when measured with the ASRT task, is independent of sleep (Nemeth, Janacsek, 

Londe, et al., 2010; Song et al., 2007b). It is important to note that this notion is highly 

speculative and further studies are warranted to corroborate it on the neural level. 

An important theoretical aspect of learning and memory research in general is the 

dissociation of performance versus competence. This dissociation suggests that 

performance can fluctuate, and in a given moment, it might not always accurately reflect 

competence, that is, the underlying knowledge (Soderstrom & Bjork, 2015). As discussed 

several times throughout the dissertation, Janacsek et al. (2012) propose age-variant 

learning of statistical regularities across the lifespan. It is possible, however, that even 

though the results show a performance drop in statistical learning above the age of 12, 

competence of learning does not change. Janacsek et al. (2012) suggested that the 

decreased performance above the age of 12 might be related to the maturation of the 
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prefrontal cortex and to the emergence of internal models at the expense of extracting raw 

regularities from the environment. It might be possible that maturation of the prefrontal 

cortex-related networks only decreases the performance but not the competence of 

learning.  

The dissociation of performance and competence can be tested by manipulating 

the temporal factors, for instance, the stimulus presentation rate. Kiss, Nemeth, and 

Janacsek (2022) manipulated the stimulus presentation rate in the ASRT task to test how 

the elapsed time between consecutive events influence the performance versus 

competence dissociation. Concerning reaction times, testing the acquired knowledge with 

faster presentation rates resulted in better learning, irrespective of the presentation rates 

during learning. This indicates that faster presentation rates can help with the expression 

of the acquired knowledge, at least in young adults. Employing the ASRT task, two 

studies also showed the dissociation of performance and competence by manipulating the 

task’s instructions (i.e., focusing on accuracy or reaction time, Vékony et al., 2020; 

Vékony, Pleche, Pesthy, Janacsek, & Nemeth, 2022). It would be beneficial to test how 

temporal factors and instructions can influence the dissociation of performance and 

competence across the lifespan and how this might be related to the development of 

procedural memory. 

3.2. Methodological implications of the presented studies 

In clinical, developmental and lifespan studies involving the examination of RTs, 

taking into account the baseline RT differences across groups is highly important. Clinical 

groups sometimes show slower RTs and higher variance than their neurotypical peers 

(e.g., Janacsek, Borbély-Ipkovich, Nemeth, & Gonda, 2018) and several studies showed 

that children and older adults demonstrate slower RTs than young adults (Janacsek et al., 

2012; Juhasz et al., 2019; Lukács & Kemény, 2015). The baseline differences in RT can 

influence and confound the learning performance: as clinical groups, children and older 

adults show slower baseline RTs, they have more room to improve in learning. In Study 

1 and 2, participants with TS and typically developing peers showed similar baseline RTs, 

thus, standardization of RTs was not needed. In contrast, we found marked baseline RT 

differences in Study 3 and 4, where we tested the possibility of age variance in 

consolidation. Therefore, we analyzed standardized RT data in conjunction with raw RT 

data. 
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We believe that baseline RT differences must be considered; however, it is 

important to note that standardization of RT data has its own drawbacks as well. Both 

processing speed and variability are inherent aspects of development and aging. Slower 

processing speed and higher variability in learning can results in a better learning 

performance. Hence, during standardization, we risk the possibility of eliminating these 

fundamental aspects of learning. Moreover, transforming RT data can hinder 

interpretability, transformed results are often difficult to understand and explain. 

Relatedly, it is possible that across the lifespan, the relation between baseline RT and 

learning performance differs. For instance, Juhasz et al. (2019) aimed to explore the more 

room to improve concept and investigated how baseline RT differences between the ages 

of 7 and 85 influence statistical learning as well as general skill learning in the ASRT 

task. Baseline RTs and general skill learning were correlated within the age groups. They 

found significant positive correlations in children, in young adulthood and old adulthood, 

but not in adolescents and middle-aged participants, which suggests that this relationship 

is not universal across the lifespan. In contrast, no correlation was found between baseline 

RTs and statistical learning in any of the age groups, which suggests that the statistical 

learning measure used in the ASRT task is well-suited for group comparisons even when 

baseline RT differences across the groups are present (Juhasz et al., 2019). Nevertheless, 

in Study 4, we used both raw RT data and standardized RT scores. Results on general 

skill knowledge differed between the raw and standardized RT data, suggesting that the 

enhanced offline learning in the 7-8-year-old group might be due to the more room to 

improve concept. In contrast, results on the consolidation of statistical knowledge 

remained identical to the raw RT data across several standardization methods. In 

summary, based on the above methodological pitfalls, we suggest that both raw and 

standardized RT data should be reported in developmental and lifespan studies. 

3.3. Clinical implications of the presented studies 

Possibly enhanced learning and intact retention of procedural memories in TS has clinical 

as well as educational implications. As mentioned several times in the dissertation, 

procedural memory is related to cognitive, motor, and social skills and habits as well 

(Kaufman et al., 2010; Ullman, 2004). Employing a one-year retention in Study 2 helps 

to infer conclusions on real-world observations as learning a new skill or developing a 

habit take place over a longer time period than the usual time scale of lab experiments 

(typically hours or days). Thus, based on prior studies (Shephard et al., 2019; Takács et 
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al., 2018) and the results of Study 1 and 2, children with TS might be better in acquiring 

a new skill and they also might be successful in maintaining and remembering the learned 

skills. The results might also bear some clinical implications: the first-line treatments of 

tics are behavioral therapies, such as habit reversal training (Piacentini et al., 2010). 

During habit reversal training, when patients sense the urge to tic, they learn to carry out 

an oppositional action that is physically incompatible with the tic and more appropriate 

(e.g., flexing neck muscles instead of head twitching). Patients will eventually start 

performing the adequate action instead of the tic when feeling the urge, replacing the urge 

– tic association with the urge – adequate action association. It is plausible that, just as 

tics and procedural knowledge, the new urge – adequate action association leads to a 

stable memory representation (see more details in the discussion of Study 2). 

4. Limitations and future directions 

The presented studies are not without limitations. Considering Study 1 and 2, clinical 

samples are often heterogeneous across studies regarding age, medication, comorbid 

diagnoses and symptom severity, and the sample sizes are relatively low. The diversity 

of past research makes it difficult to draw firm conclusions on procedural 

hyperfunctioning in TS. Due to this inconsistency, it would be highly beneficial to 

conduct studies involving the same sample of TS participants and employ different kinds 

of statistical learning tasks. Relatedly, some well-established, reliable tasks measuring 

statistical learning have never been employed in a TS study, such as the embedded-pattern 

task. A large number of studies have employed variations of the embedded-pattern task 

using either spatial (Fiser & Aslin, 2001) or temporal visual or auditory streams (Turk-

Browne, Isola, Scholl, & Treat, 2008). To comprehensively test how changes in the 

fronto-striatal networks lead to changes in procedural memory in TS, future studies 

should test the same large number of TS participants using not only variations of the 

embedded-pattern task but other task measuring different regularities within procedural 

memory as well. 

The neural correlates of procedural memory have been thoroughly examined in 

previous studies. Concerning the ASRT task, both event-related potentials and neural 

oscillations have been tested before, at least in young adults (Kóbor et al., 2018; Tóth et 

al., 2017). Across the lifespan, the integration of brain networks undergo significant 

changes (e.g., Marek et al., 2018), therefore, event-related potentials and neural 
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oscillations related to procedural memory might also change during development. 

Employing the cued ASRT task, Kóbor et al. (2018) found that N2 amplitude modulation 

mirrors the changes on the behavioral level in young adults: probability-based regularities 

are acquired rapidly which was reflected in higher N2 amplitude for random high than 

random low trials and this difference remained constant across the task. N2 amplitude 

was also higher for pattern than random high trials and it increased with practice, 

reflecting the gradual acquisition of serial order-based regularities. Based on these results 

and the results of Study 1, we could expect that the speeded acquisition of probability-

based regularities in TS would also be reflected on the neural level by enhanced N2 

amplitudes. Moreover, past research have shown that in young adults, learning of 

statistical regularities is inversely correlated with the strength of connectivity in the theta 

band (Tóth et al., 2017). We could expect that as statistical learning might be enhanced 

in TS, this inverse relation might be stronger in TS than in typically developing peers. 

Moreover, rewiring of procedural memory representations is an intriguing field of 

research and has been investigated in neurotypical adults (Horvath, Nemeth, & Janacsek, 

2022; Szegedi-Hallgató et al., 2017). As mentioned before, according to past research, 

memory representations of procedural knowledge might be overstable in TS (Shephard 

et al., 2019; Takacs et al., 2021), which would lead to higher resistance to interference. 

This would make it more difficult to overwrite or rewire existing associations. A fruitful 

line of research has been investigating a related process, that is, stimulus-response (S-R) 

learning in TS. Beste and Münchau (2018) proposed that an enhanced cognitive function 

of acquiring S-R associations might explain tics in TS. Moreover, they hypothesized that 

the acquired associations are rigid, which would hinder the adaptation to contextual 

changes. Empirical findings corroborated this notion in adults (Kleimaker et al., 2020), 

but not in children with TS (Beste et al., 2021). Future research should examine the extent 

to which TS patients can rewire their procedural memory representations and how this 

affects their response to behavioral treatments. 

Cross-sectional research design also has its limitations, past research has found a 

serious discrepancy between cross-sectional and longitudinal studies (Keresztes et al., 

2022; Nyberg et al., 2010). For instance, one striking difference emerged in the field of 

hippocampal maturation: While cross-sectional findings implicated an increase in 

specific hippocampal subfields from middle childhood to early adolescence, longitudinal 

developmental trajectories suggested the opposite. Thus, investigating developmental 

differences using longitudinal designs instead of cross-sectional ones is warranted. One 
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of our ongoing studies aims to examine how statistical learning changes over time: we 

tested participants four times over an approximately 7-year time window, at 7, 8, 11 and 

14 years of age. Preliminary results suggest that the result of Janacsek et al. (2012) 

showing decreased learning above the age of 12 has been replicated: over the span of 

seven years, participants showed a gradual decrease in learning in terms of raw reaction 

times. Hence, in this case, cross-sectional and longitudinal findings point toward the same 

direction. Nevertheless, in future studies, it would be beneficial to investigate whether 

age-invariance in procedural memory consolidation is supported by longitudinal findings 

as well. 

5. Conclusions 

The aim of the dissertation was to provide a deeper understanding of procedural memory 

by investigating this memory system in atypically and typically developing children and 

adolescents and across the lifespan. We investigated two regularities within the 

procedural memory system, that is, probability-based and serial-order regularities. Our 

results showed enhanced learning of probability-based regularities, whereas acquisition 

of serial-order regularities was impaired in Tourette Syndrome. The consolidation of 

probability-based regularities was robust in this neurodevelopmental disorder both over 

a short- and long-term offline delay. Similarly, consolidation of probability-based as well 

as serial-order regularities is resistant to forgetting over a one-year delay in typically 

developing children and adolescents. This is line with prior studies showing successful 

retention of statistical knowledge in neurotypical young adults (Kóbor et al., 2017; 

Romano et al., 2010), suggesting age-invariance in consolidation. The notion of age-

invariant consolidation of statistical knowledge was corroborated by Study 4, where 

comparable retention was found from the age of 7 to 76 years. To sum up, based on past 

research and the results of the four studies presented in the dissertation, we can draw the 

following conclusions: changes in the fronto-striatal networks might influence the 

acquisition of procedural information, but not the retention of procedural knowledge.  
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Supplementary materials of Study 1 entitled 

 

“Dissociation between two aspects of procedural learning in Tourette 

syndrome: Enhanced statistical and impaired sequence learning” 

 

1. Supplementary data analyses on sample without comorbid diagnoses   

In order to check whether comorbidities could confound the results or explain the 

procedural advantage reported in the manuscript, we have run the same analyses as 

described in the manuscript on the 17 children with TS without any comorbidities and 

their matched controls.  

 

1.1. Supplementary Results 

We ran a mixed design ANOVA on RT data across the four epochs. Statistical 

learning was quantified with a mixed design ANOVA with FREQUENCY (random high-

frequency and random low-frequency triplets) and EPOCH (1-4) as within-subjects 

factors and GROUP (TS and TD) as a between-subjects factor. Sequence learning was 

also quantified with a mixed design ANOVA with ORDER (pattern high-frequency and 

random high-frequency triplets) and EPOCH (1-4) as within-subjects factors and GROUP 

(TS and TD) as a between-subjects factor. To test for post hoc pairwise comparisons, we 

used LSD (Least Significance Difference) tests. 

As for statistical learning, the main effect of FREQUENCY was significant (F(1, 

32) = 56.11, p < .001, η2
p = 0.637), indicating that RTs were faster on random high-

frequency triplets than on random low-frequency ones. The main effect of EPOCH was 

also significant (F(3, 96) = 42.16, p < .001, η2
p = 0.569), meaning that over groups, 

participants became faster with practice on both triplets. Crucially, the 

FREQUENCY*EPOCH*GROUP interaction was significant (F(3, 96) = 3.50, p = .018, 

η2
p = 0.099), meaning that the time course of statistical learning was different between 

the groups. Similarly to the results presented in the manuscript, follow-up analysis 

revealed a difference in the first epoch between the groups: The TS group showed higher 

learning than the TD group (TS: M = 28.14 ms, SD = 28.95 ms; TD: M = -3.47 ms, SD = 

29.55 ms). There was no difference in the remaining epochs (all ps > .397). The main 

effect of GROUP and other interactions were not significant (all ps > .102). 

As for sequence learning, the main effect of ORDER was significant (F(1, 32) = 

8.90, p = .005, η2
p = 0.218), meaning that participants showed faster RTs on the pattern 
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high-frequency triplets compared with the random high-frequency triplets. The main 

effect of EPOCH was significant as well (F(3, 96) = 44.35, p < .001, η2
p = 0.581), 

suggesting that participants showed faster RTs with practice over both triplets. Similarly 

to the results in the manuscript, the ORDER*EPOCH interaction was significant (F(3, 

96) = 5.02, p = .032, η2
p = 0.136), meaning that the groups differed in the RT difference 

between the triplets. Follow-up analysis on the learning scores suggests that while the TD 

group learned to differentiate between the triplets, the TS group showed similar RTs on 

both triplets (TD: M = 46.65 ms, SD = 71.27 ms; TS: M = 6.63 ms, SD = 18.51 ms). The 

EPOCH*GROUP interaction was significant (F(2.0, 65.9) = 3.77, p = .027, η2
p = 0.106), 

other main effects or interactions were not significant (all ps > .253). 

To summarize, analyses without comorbidities showed identical result as our 

original analyses, indicating that the inclusion of participants with ADHD and OCD 

comorbidities in the TS group explains neither the procedural enhancement, nor the 

results of sequence learning. 
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Supplementary materials of Study 2 entitled 

“Access to Procedural Memories After One Year: Evidence for Robust 

Memory Consolidation in Tourette Syndrome” 

 

1. Analyses of the short- and long-term consolidation of serial-order knowledge 

Analyses on performance in the Learning Phase have shown that the participants did not 

acquire the serial-order information (see Prerequisite of memory consolidation section in 

the Manuscript). Hence, the prerequisite of memory consolidation did not fulfill which 

calls into question the applicability of retention analyses concerning sequence learning. 

Nevertheless, in sake of completeness, we report the analyses on short- and long-term 

retention of serial-order knowledge here. 

 

1.1. Short-term (five-hour) consolidation of serial-order knowledge 

To test the 5-hour retention of serial-order knowledge, we run a mixed-design 

ANOVA on RT with GROUP (TS vs. TD) as between-subjects factor and ORDER 

(pattern vs. random high) and EPOCH (4 vs. 5) as within-subject factors. Overall, 

irrespective of epochs and group, participants were faster on pattern high (M = 386.37 

ms) than on random high trials (M = 415.70 ms) (main effect of ORDER, F(1, 36) = 5.58, 

p < 0.02, η2
p = 0.13). The ANOVA revealed retained serial-order memory after the 5-

hour delay (non-significant ORDER × EPOCH interaction, F(1, 36) = 2.20, p = 0.15, 

BF01 = 2.06), memory scores were similar in the 4th (M = 22.22 ms) and 5th (M = 36.43 

ms) epochs. The TS and TD groups showed comparable memory performance (non-

significant GROUP × ORDER × EPOCH interaction, F(1, 36) = 0.52, p = 0.48, 

independent samples t-tests were conducted on the short-term offline change score, BF01 

= 2.59, short-term offline change scores: MTS = 21.11 ms, MTD = 7.32 ms). Other main 

effects or interactions were also not significant (all ps > 0.070). 

 

1.2. Long-term (one-year) consolidation of serial-order knowledge 

To test 1-year retention of sequential knowledge, we conducted a mixed design 

ANOVA on RT with GROUP (TS vs. TD) as between-subjects factor and ORDER 

(pattern vs. random high) and EPOCH (6 vs. 7) as within-subject factors. Irrespective of 

group and epochs, participants showed faster RTs on pattern high (M = 370.03 ms) than 

on random high trials (M = 412.08 ms) (main effect of ORDER, F(1, 36) = 5.34, p = 0.03, 
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η2
p = 0.13). The ANOVA revealed that, over groups, the memory scores did not change 

in the 1-year-long offline period (non-significant ORDER × EPOCH interaction, F(1, 36) 

= 1.90, p = 0.18, BF01 = 2.41), with similar memory scores in the 6th (M = 58.65 ms) and 

in the 7th (M = 25.45 ms) epochs. The TS and TD groups did not differ in retention (non-

significant GROUP × ORDER × EPOCH interaction, F(1, 36) = 1.20, p = 0.28, 

independent samples t-tests were conducted on the long-term offline change score BF01 

= 1.98, long-term offline change scores: MTS = -59.61 ms, MTD = -6.79 ms). Other main 

effects or interactions were not significant (all ps > 0.074). 
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Supplementary materials of Study 3 entitled 

 

“Statistical and sequence learning lead to persistent memory in 

children after a one-year offline period” 

 

1. Analysis of accuracy data 

In the ASRT task, participants were provided with feedback about their performance, i.e., 

about their average RTs and accuracy, after each block. They were encouraged to keep 

accuracy above 92%, and the mean accuracy in the study was 92.29 % (SD = 3.38 %). 

High accuracy scores and relatively low variability in samples of neurotypical 

participants can hinder the detection of learning (Vékony et al., 2020); therefore, RTs 

could be considered a more appropriate measure of statistical and sequence learning. 

Based on this argument, we reported only the RT data in the Manuscript. Here, we report 

the analyses on accuracy values, which revealed similar results as the results on RT data. 

 

1.1. Statistical analysis 

Similarly to RT values (see Statistical analyses section of the Manuscript), prior 

developmental studies showed that age has a large effect on average accuracy (Janacsek 

et al., 2012; Juhasz et al., 2019; Zwart et al., 2019). To test this, we first calculated average 

accuracy over the 10 epochs (i.e., accuracy data was calculated on all trials, irrespective 

of trial types). We then correlated the average accuracy with age, which revealed a 

significant positive correlation (r(68) = .32, p = .007), showing that younger children 

were less accurate on the task. To control for the effect of average accuracy differences 

related to age on learning and consolidation of knowledge, we transformed the data in the 

following way. We divided each participants’ raw accuracy values of each trial type and 

each epoch by their own average performance (i.e., average accuracy) in the first epoch 

of the task (for a similar approach, see Horvath et al., 2020; Nitsche et al., 2003). 

Participants’ performance was around 1 at the beginning of the task and changed as the 

task progressed. Values above 1 indicated that responses were more accurate on a given 

trial type than the responses combined to all trial types (i.e., average accuracy) in the very 

first epoch of the task; and values below 1 meant that responses were less accurate on a 

given trial type compared to average accuracy in the first epoch. We conducted all 

analyses in the Supplementary Material on standardized accuracy. 
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Statistical learning score in the Learning Phase and memory scores in the Testing 

and Retesting Phases were quantified as the difference between random high and random 

low trial types in accuracy (accuracy for random high minus accuracy for random low 

trials). The learning and memory scores of sequence learning were calculated as the 

difference between pattern and random high trial types in accuracy (accuracy for pattern 

minus accuracy for random high trials). Higher scores indicate larger statistical or 

sequence learning/memory. To assess learning and the retention of knowledge, repeated 

measures ANOVAs and paired-samples t-tests were conducted on standardized accuracy 

data, separately for statistical and sequence learning. The Greenhouse-Geisser epsilon (ε) 

correction was used when necessary. Original df values and corrected p values (if 

applicable) are reported with partial eta-squared (η2
p) as a measure of effect size. In 

conjunction with the frequentist analyses, we performed Bayesian paired-samples t-tests 

and calculated the Bayes Factor (BF) for the relevant comparisons as well. 

  

1.2. Results 

1.2.1. Prerequisite of memory consolidation 

To assess memory consolidation, significant learning has to occur preceding the 

offline period. Therefore, as a first step, we conducted repeated-measures ANOVAs on 

the Learning Phase to confirm that significant learning has occurred concerning both 

statistical and sequence learning. ANOVAs were conducted on standardized accuracy 

separately for statistical and sequence learning. 

Statistical learning during the Learning Phase wase tested with a two-way 

repeated-measures ANOVA with PROBABILITY (random high vs random low) and 

EPOCH (1-4) as within-subject factors. The ANOVA revealed significant statistical 

learning (main effect of PROBABILITY, F(1, 69) = 33.65, p < .001, η2
p = .33). Post-hoc 

pairwise comparisons revealed higher accuracy on random high trials (M = 1.003) 

compared to random low trials (M = 0.97). Average accuracy (i.e., irrespective of trial 

types) did not change throughout the task (main effect of EPOCH, F(3, 207) = 1.54, p = 

.22). Statistical learning also did not change as the task progressed (PROBABILITY × 

EPOCH interaction, F(3, 207) = 0.93, p = .43, Fig. S4.1A). 

To test sequence learning during the Learning Phase, similar two-way repeated-

measures ANOVAs with ORDER (pattern vs random high) and EPOCH (1-4) as within-

subject factors were conducted. The ANOVA revealed marginally significant learning 

(main effect of ORDER, F(1, 69) = 3.39, p = .07, η2
p = .05), participants showed 
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marginally higher accuracy on pattern (M = 1.01) compared to random high trials (M = 

1.003). Neither the average accuracy, nor the extent of sequence learning changed 

throughout the task (main effect of EPOCH, F(3, 207) = 1.46, p = .24 and ORDER × 

EPOCH interaction, F(3, 207) = 2.39, p = .07, respectively, Fig. S4.1B). 

Furthermore, to investigate whether individual differences influence the learning 

on the task, we correlated statistical and sequence learning scores with working memory 

capacity, with percentage of perseverative errors on the WCST task, with socioeconomic 

status, and with total problem score on the SDQ. To control for multiple comparisons, we 

employed False Discovery Rate correction. None of the correlations reached significance 

(all ps > .128). We also rerun the ANOVAs on the sample without left-handed participants 

to control for handedness. The results were identical to the ones on the whole sample. 

 

 

Figure S4.1. Temporal dynamics of (A) statistical and (B) sequence learning across epochs 

and sessions. Standardized accuracy values as a function of the epoch (1-10) and trial types 

(random high vs random low for statistical learning and pattern vs random high for sequence 

learning) are presented. Blue lines with triangle symbols indicate standardized accuracy values 

on the random high trials, green lines with square symbols indicate standardized accuracy values 

on the random low trials and orange lines with circle symbols indicate standardized accuracy 

values on the pattern trials. (A) Statistical learning is quantified by the gap between blue and 

green lines and (B) sequence learning is quantified by the gap between orange and blue lines. In 

both cases, greater gap between the lines represents better learning. Error bars denote standard 

error of mean. 

1.2.2. Do children retain regularities after a one-year offline period? 

To test one-year retention of statistical knowledge, we conducted a two-way 

repeated-measures ANOVA with PROBABILITY (random high vs random low) and 

EPOCH (6 vs. 7) as within-subject factors. Overall, irrespective of epochs, participants 

showed higher accuracy on random high (M = 1.02) compared to random low trials (M = 
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0.99) (main effect of PROBABILITY, F(1, 69) = 49.53, p < .001, η2
p = .42). Average 

accuracy (i.e., irrespective of trial types) differed in the two epochs (main effect of 

EPOCH, F(1, 69) = 30.10, p < .001, η2
p = .30), participants showed higher accuracy in 

the 7th epoch (M = 1.03) than in the 6th epoch (M = 0.99). The ANOVA showed a 

difference in memory scores between the Testing and Retesting Phases (significant 

PROBABILITY × EPOCH interaction, F(1, 69) = 4.34, p = .04, η2
p = .06) Follow-up 

paired sample t-tests on the memory scores revealed that statistical memory underwent 

decrease over the one-year delay (6th epoch: M = 0.0474, 7th epoch: M = 0.0288; Fig. 

S4.2A), however, Bayesian analysis did not confirm this result (BF01 = 1.003). 

Furthermore, as the long-term delay had some variability in terms of weeks (Mdelay = 

53.08 weeks, SDdelay = 2.39 weeks, between 47.95 and 60.24 weeks), we examined 

whether it has any relation to the long-term memory performance. First, we calculated an 

offline change score for statistical knowledge by subtracting the standardized memory 

score in Epoch 6 from the standardized memory score in Epoch 7. This way, negative 

scores indicate forgetting, and positive scores indicate offline learning. Offline change 

score did not show correlation with the length of the long-term delay (rs(68) = .129, p = 

.287; BF01 = 4.023). 

To investigate one-year retention of serial-order knowledge, we also ran a two-

way repeated-measures ANOVA with ORDER (pattern vs random high) and EPOCH (6 

vs. 7) as within-subject factors. Overall, irrespective of epoch, participants showed 

comparable accuracy on pattern and random high trials (main effect of PROBABILITY, 

F(1, 69) = 1.71, p = .20). Average accuracy (i.e., irrespective of trial types) differed in 

the two epochs (main effect of EPOCH, F(1, 69) = 29.48, p < .001, η2
p = .30), participants 

showed higher accuracy in the 7th epoch (M = 1.04) than in the 6th epoch (M = 1.01). The 

ANOVA revealed evidence for persistent memory representations of serial-order 

knowledge (non-significant ORDER × EPOCH interaction, F(1, 69) = 0.06, p = .81, BF01 

= 7.404). Follow-up paired sample t-tests on the memory scores showed comparable 

serial-order knowledge in the Testing and Retesting Phases (6th epoch: M = 0.0035, 7th 

epoch: M = 0.0054; Fig. S4.2B). Similarly to statistical knowledge, we also correlated the 

offline change score of serial-order knowledge and the length of the long-term delay. 

Offline change scores of serial-order knowledge did not correlate with the length of the 

delay (rs(68) = -.190, p = .114; BF01 = 2.049). 

Moreover, similarly for the learning scores, to investigate whether individual 

differences influence the consolidation of statistical or serial-order knowledge, we 
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correlated the offline change scores with working memory capacity, with percentage of 

perseverative errors on the WCST task, with socioeconomic status and with total problem 

score on the SDQ. To control for multiple comparisons, we employed False Discovery 

Rate correction. None of the correlations reached significance (all ps > .766). We also 

rerun the ANOVAs on the sample without left-handed participants to control for 

handedness. The results were identical to the ones on the whole sample. 

 

 

Figure S4.2. Retention of (A) statistical and (B) serial-order knowledge. Memory scores 

measured by standardized accuracy values for the last epoch of the Testing Phase (Epoch 6) and 

the first epoch of the Retesting Phase (Epoch 7). Error bars denote the standard error of mean.  

1.2.3. Does age affect the one-year retention of statistical and serial-order regularities? 

To check the possible association between age and retention, we conducted 

Pearson’s correlation between the offline change scores and age. Regarding statistical 

knowledge, offline change scores did not show correlation with age (r(68) = .01, p = .92, 

BF01 = 6.67). Concerning serial-order knowledge, offline change scores in accuracy also 

did not correlate with age (r(68) = .15, p = .21, BF01 = 3.08). 
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Supplementary Material of Study 4 entitled 

“Lifespan developmental invariance in memory consolidation: 

Evidence from procedural memory” 

1. Bayesian model comparisons for consolidation of statistical and general skill 

knowledge 

Table S5.1. Bayesian model comparisons for consolidation of statistical knowledge. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  0.179  0.871  1.000    

Age group   0.200  0.717  10.122  0.250  0.480  

Epoch + Age group   0.200  0.083  0.363  2.150  1.807  

Epoch   0.200  0.021  0.085  8.583  1.343  

Epoch + Age group + Epoch × Age group   0.200  3.382e -4  0.001  528.860  1.477  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

Table S5.2. Bayesian model comparisons for consolidation of general skill knowledge. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  2.556e -46   1.022e -45   1.000     

Epoch + Age group   0.200  0.548   4.857   4.661e -46   1.032   

Epoch + Age group + Epoch × Age group   0.200  0.452   3.295   5.659e -46   1.407   

Age group   0.200  5.850e -18   2.340e -17   4.369e -29   0.328   

Epoch   0.200  2.831e -29   1.132e -28   9.027e -18   0.964   

Notes.  All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor.  
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2. Supplementary Figures of offline change of statistical and general skill 

knowledge 

 

Figure S5.1. Offline change of statistical knowledge over the 24-hour delay across the age 

groups. Offline change scores were calculated by subtracting statistical knowledge values for the 

last epoch of the Learning Phase (Epoch 4) from those for the first epoch of the Testing Phase. 

Error bars denote the standard error of mean (SEM). 

 

Figure S5.2. Offline change of general skill knowledge over the 24-hour delay across the age 

groups. Offline change scores were calculated by subtracting average RT values for the last epoch 

of the Learning Phase (Epoch 4) from those for the first epoch of the Testing Phase. Error bars 

denote the standard error of mean (SEM).
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3. Results on learning 

3.1. Are there age-related differences in statistical learning in terms of RTs? 

To test whether the learning of statistical knowledge is age-variant, we submitted the 

statistical learning scores computed separately for the epochs of the Learning Phase 

(Epoch 1-4) to a mixed-design ANOVA with EPOCH (Epoch 1-4) as a within-subject 

factor and AGE GROUP as a between-subjects factor. The ANOVA revealed overall 

significant learning (main effect of INTERCEPT: F(1, 246) = 225.24, p < .001, p
2 = 

0.48) and an overall increase of statistical learning score across the epochs (main effect 

of EPOCH: F(3, 738) = 7.63, p < .001, p
2 = 0.03). The trajectory of the increase was 

similar across the age groups (AGE GROUP x EPOCH interaction: F(24, 738) = 0.88, p 

= 0.63, p
2 = 0.03). Importantly, the ANOVA showed significant differences in overall 

learning across the age groups (main effect of AGE GROUP: F(8, 246) = 2.69, p = .008, 

p
2 = 0.08). Learning gradually decreased with age. In detail, the 7-8-year-olds showed 

better learning than participants over 14 (p < .042), the 9-10-year-olds showed better 

learning than participants over 16 (p < .04) and the 11-13-year-olds showed better 

learning than participants over 18 (p < .045). Over the age of 14, learning scores are 

comparable across the age groups (p > .32). 

3.2. Are there age-related differences in general skill learning in terms of RTs? 

To test whether general skill learning is age-variant, we submitted the median RTs of the 

epochs in the Learning Phase (Epoch 1-4) to a mixed-design ANOVA with EPOCH 

(Epoch 1-4) as a within-subject factor and AGE GROUP as a between-subject factor. The 

ANOVA showed that over groups, median RTs decreased as the task progressed (main 

effect of EPOCH: F(3, 738) = 206.43, p < .001, p
2 = 0.46) and median RTs differed 

significantly across age groups (main effect of AGE GROUP: F(8, 246) = 27.90, p < .001, 

p
2 = 0.48), revealing a U-shaped trajectory with highest RTs in the youngest and oldest 

age groups. Moreover, the trajectory of general skill learning differed across the age 

groups (AGE GROUP x EPOCH interaction: F(24, 738) = 5.68, p < .001, p
2 = 0.16). We 

calculated the amount of change in RTs from Epoch 1 to Epoch 4 by subtracting median 

RTs in Epoch 4 from median RTs in Epoch 1. This way, higher scores indicate a steeper 

decrease of reaction times, that is, better general skill learning. A follow-up one-way 

ANOVA on this score showed that 7-8-year-olds exhibited the greatest general skill 
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learning, which significantly differed from the other age groups’ (ps < .01), except for the 

61-76-year-old group (p = .34). The 9-10-year-olds showed smaller speed-up than the 7-

8-year-olds, a comparable speed-up to the 11-13-year-olds and a higher speed-up than the 

other age groups between 14 and 60 years of age (p < .039). From 14 to 60 years of age, 

general skill learning was comparable across the age groups (p > .41). The 61-76-year-

olds’ general skill learning was significantly smaller than the other age groups (p < .006), 

expect for the 7-8-year-olds (p = .34) and 9-10-year-olds (p = .108).  
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4. Results on learning in terms of ratio scores 

Due to the baseline RT differences across the age groups, we conducted additional 

ANOVA on ratio scores to test statistical learning while controlling for RT differences 

across the groups (for details on the standardization process, see Statistical analysis 

section of the manuscript). As the effect of standardization on general skill learning was 

comprehensively tested on this database in the study of Juhasz et al. (2019), here, we only 

report results on statistical learning in terms of ratio scores. 

4.1. Are there age-related differences in statistical learning in terms of ratio scores? 

Identically to the raw learning scores, we submitted the ratio scores to a mixed-design 

ANOVA with EPOCH (Epoch 1-4) as a within-subject factor and AGE GROUP as a 

between-subjects factor. The ANOVA revealed overall significant learning (main effect 

of INTERCEPT: F(1, 246) = 278.07, p < .001, p
2 = 0.53) and an overall increase of 

statistical learning score across the epochs (main effect of EPOCH: F(3, 738) = 12.22, p 

< .001, p
2 = 0.05). The trajectory of the increase was similar across the age groups (AGE 

GROUP x EPOCH interaction: F(24, 738) = 0.93, p = 0.56, p
2 = 0.03). The ANOVA 

also revealed significant differences in overall learning across the age groups (main effect 

of AGE GROUP: F(8, 246) = 2.50, p = .01, p
2 = 0.08), however, the differences were 

not identical to those of the analysis on raw statistical learning scores. Standardized 

statistical learning scores were comparable between the age of 7 and 29 (p > .096, BF01 

> 1.859). The 30-44-year-old group exhibited decreased learning compared to 9-10-year-

olds (p = .05, BF01 = 1.142) and 11-13-year-olds (p = .02, BF01 = 0.485), but there was 

no significant difference in the learning scores between the 30-44-year-old group and the 

age groups between 14 and 29 years (ps > .087, BF01 > 1.438). The 45-60-year-old and 

61-76-year-old group showed decreased learning than almost all the age groups under the 

age of 15 (p < .052, BF01 < 0.828, except for the 7-8-year-olds vs. 61-76-year-olds, where 

p = .057, BF01 = 0.654).  
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5. Results on consolidation based on standardized reaction times 

It is well-established that children and older adults respond with slower reaction times 

(RTs) overall (Janacsek et al., 2012; Juhasz et al., 2019). Hence, we conducted additional 

ANOVAs on standardized RTs to probe the retention of statistical and general skill 

knowledge while controlling for average RT differences across age groups. We 

standardized the data in two different ways: we calculated (1) ratio scores and (2) log-

transformed RT data (for details on the standardization process, see Statistical analysis 

section of the manuscript). Here, we report the exact statistics of the analyses on 

standardized RTs. 

 

5.1. Standardization with ratio scores 

5.1.1. Do age groups differ in consolidation of statistical knowledge in terms of ratio 

scores? 

To rule out the possibility of average RT differences among the age groups confounding 

our results, we tested the consolidation of statistical knowledge on ratio scores as well. 

We contrasted statistical learning scores computed from ratio scores for the last epoch of 

the Learning Phase (Epoch 4) with the learning scores computed for the first of epoch of 

the Testing Phase (Epoch 5) and submitted these scores to a mixed-design ANOVA with 

EPOCH (Epoch 4 vs Epoch 5) as a within-subject factor and AGE GROUP as a between-

subjects factor. The ANOVA showed overall significant statistical knowledge (main 

effect of INTERCEPT: F(1, 246) = 388.30, p < 0.001, p
2 = 0.61) and significant 

differences in overall learning across age groups (main effect of AGE GROUP: F(8, 246) 

= 4.70, p < 0.001, p
2 = 0.13). Importantly, statistical knowledge appears to be retained 

over the 24-hour delay period with no significant change between the end of the Learning 

Phase and the Testing Phase (main effect of EPOCH: F(1, 246) = 0.25, p = 0.62, p
2 = 

0.001). Moreover, no age group differences emerged in the retention of the statistical 

knowledge (non-significant EPOCH x AGE GROUP interaction: F(8, 246) = 0.18, p = 

0.99, p
2 = 0.006): all age groups retained the acquired knowledge over the 24-hour delay 

period (all ps > .37). Bayesian mixed-design ANOVA on the standardized scores also 

supported the finding of the frequentist ANOVA by showing that the main effect of 

EPOCH and EPOCH x AGE GROUP interaction should be excluded from the model 

(Table S5.3 and S5.4). Thus, this analysis also suggests the successful retention of 

statistical knowledge over the 24-hour delay period in all age groups. 
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Table S5.3. Analysis of effects of Bayesian ANOVA for consolidation of standardized statistical 

knowledge in terms of ratio scores. 

Effects P(incl) P(incl|data) BFexclusion 

Epoch 0.400 0.099 9.081 

Age group 0.400 0.998 0.002 

Epoch × Age group 0.200 4.196e-4 235.891 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

Table S5.4. Bayesian model comparisons for standardized statistical knowledge in terms of ratio 

scores. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  0.002  0.006  1.000    

Age group   0.200  0.899  35.556  0.002  0.494  

Epoch + Age group   0.200  0.099  0.439  0.016  1.699  

Epoch + Age group + Epoch × Age group   0.200  4.196e -4  0.002  3.690  0.965  

Epoch   0.200  1.686e -4  6.747e -4  9.182  1.760  

Notes.  All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

5.1.2. Do age groups differ in consolidation of general skill knowledge in terms of ratio 

scores? 

Similarly to statistical knowledge, we tested consolidation of general skill knowledge 

(defined as overall RT changes) over the 24-hour delay period using ratio scores as well. 

We ran an ANOVA on ratio scores with EPOCH (Epoch 4 vs Epoch 5) as a within-subject 

factor and AGE GROUP as a between-subjects factor. The ANOVA revealed that RTs 

significantly decreased over the 24-hour delay (main effect of EPOCH: F(1, 246) = 

149.35, p < 0.001, p
2 = 0.38), thus participants responded faster in the Testing Phase 

compared to the end of the Learning Phase (significant speed-up in all age groups: all ps 
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< 0.007). The amount of RT speed-up over the delay period was similar across age groups 

(non-significant EPOCH x AGE GROUP interaction: F(8, 246) = 1.23, p = 0.28, p
2 = 

0.04; Fig. S5.3). Bayesian mixed-design ANOVA showed evidence for the inclusion of 

the main effect of EPOCH and the exclusion of the EPOCH x AGE GROUP interaction 

(Table S5.5 and S5.6), suggesting an overall speed-up over the delay period and a lack of 

differences in the amount of speed-up across age groups. 

 

 
Figure S5.3. Standardized offline change of general skill knowledge over the 24-hour delay 

across the age groups. Standardized offline change scores were calculated by subtracting 

standardized average RT values for the last epoch of the Learning Phase (Epoch 4) from those for 

the first epoch of the Testing Phase. Error bars denote the SEM. 

Table S5.5. Analysis of effects of Bayesian ANOVA for consolidation of standardized general 

skill knowledge in terms of ratio scores. 

Effects P(incl) P(incl|data) BFexclusion 

Epoch 0.400 0.945 1.728e-24 

Age group 0.400 0.945 1.391e-6 

Epoch × Age group 0.200 0.055 17.306 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 
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Table S5.6. Bayesian model comparisons for standardized general skill knowledge in terms of 

ratio scores. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  2.010e -30   8.038e -30   1.000    

Epoch + Age group   0.200  0.945   69.222   2.126e -30   1.182   

Epoch + Age group + Epoch × Age group   0.200  0.055   0.231   3.679e -29   2.024   

Epoch   0.200  1.315e -6   5.262e -6   1.528e -24   2.009   

Age group   0.200  1.634e -24   6.536e -24   1.230e -6   0.861   

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

5.2. Standardization with log-transformation 

For log-transformed RT data, we conducted identical ANOVAs as the ones presented in 

the manuscript and the ones for ratio scores presented in the supplementary materials, 

separately for statistical knowledge and general skill knowledge scores. Importantly, log-

transformed standardization showed identical results as ratio score standardization both 

for statistical knowledge scores and general skill knowledge scores, both in frequentist 

and Bayesian ANOVAs. The results on statistical knowledge are presented in Table S5.7, 

S5.8 and S5.9; and the results on general skill knowledge are presented in Table S5.10, 

S5.11 and S5.12. 

 

Table S5.7. The results of mixed-design ANOVA on the log-transformed statistical knowledge. 

Effects F p p
2 

Intercept 380.35 < 0.001 0.61 

Age group 4.44 < 0.001 0.13 

Epoch 1.40 0.24 0.006 

Epoch × Age group 0.80 0.60 0.025 

Notes. Statistical knowledge is retained over the delay period in all age groups, with no age group 

differences in retention. 
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Table S5.8. Analysis of effects of Bayesian ANOVA for consolidation of log-transformed 

statistical knowledge. 

Effects P(incl) P(incl|data) BFexclusion 

Epoch 0.400 0.158 5.307 

Age group 0.400 0.992 0.005 

Epoch × Age group 0.200 0.003 46.144 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

Table S5.9. Bayesian model comparisons for log-transformed statistical knowledge. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  0.004  0.015  1.000    

Age group   0.200  0.835  20.211  0.005  0.850  

Epoch + Age group   0.200  0.157  0.747  0.024  1.953  

Epoch + Age group + Epoch × Age group  0.200  0.003  0.014  1.110  1.550  

Epoch  0.200  7.079e-4  0.003  5.345  1.865  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

Table S5.10. The results of mixed-design ANOVA on the log-transformed general skill 

knowledge. 

Effects F p p
2 

Age group 31.53 < 0.001 0.51 

Epoch 143.10 < 0.001 0.37 

Epoch × Age group 1.33 0.23 0.04 

Notes. All age groups showed offline learning (all ps < .050) and the speed-up over the delay 

period was similar across the age groups. 
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Table S5.11. Analysis of effects of Bayesian ANOVA for consolidation of log-transformed 

general skill knowledge. 

Effects P(incl) P(incl|data) BFexclusion 

Epoch 0.400 0.932 9.798e-24 

Age group 0.400 0.932 6.645e-31 

Epoch × Age group 0.200 0.068 13.638 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

Table S5.12. Bayesian model comparisons for log-transformed general skill knowledge. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  4.944e-54  1.977e-53  1.000    

Epoch + Age group  0.200  0.932  54.552  5.306e-54  1.203  

Epoch + Age group + Epoch × Age group  0.200  0.068  0.293  7.237e-53  1.700  

Age group  0.200  9.129e-24  3.652e-23  5.415e-31  0.430  

Epoch  0.200  6.191e-31  2.477e-30  7.985e-24  0.937  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor.  
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6. Testing age-related differences in consolidation by estimating future 

performance in the Testing Phase by extrapolation 

6.1. Estimating statistical learning scores in the Testing Phase 

Table S5.13. The results of the mixed-design ANOVA on the difference between the predicted 

and observed statistical learning scores. 

Effects F p p
2 

Intercept 16.15 < 0.001 0.06 

Block 1.56 0.18 0.006 

Age group 1.53 0.15 0.05 

Block × Age group 0.70 0.90 0.02 

 

Table S5.14. Analysis of effects of the Bayesian ANOVA on the difference between the predicted 

and observed statistical learning scores. 

Effects P(incl) P(incl|data) BFexclusion 

Block 0.400 0.013 73.908 

Age group 0.400 0.005 206.070 

Block × Age group 0.200 1.270e-8 5234.761 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

Table S5.15. Bayesian model comparisons for the difference between the predicted and observed 

statistical learning scores. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200   0.982 216.843  1.000    

Block  0.200   0.013 0.054  73.920  2.037  

Age group  0.200   0.005 0.019  206.157  0.280  

Block + Age group  0.200   6.647e-5 2.659e-4  14771.791  1.761  

Block + Age group + Block × Age group  0.200   1.270e-8 5.079e-8  7.733e+7  0.687  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 
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around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

6.2. Estimating general skill learning scores in the Testing Phase 

Table S5.16. The results of the mixed-design ANOVA on the difference between the predicted 

and observed general skill learning scores. 

Effects F p p
2 

Intercept 14.59 < 0.001 0.06 

Block 6.84 < 0.001 0.03 

Age group 0.47 0.88 0.02 

Block × Age group 1.00 0.46 0.03 

 

Table S5.17. Analysis of effects of the Bayesian ANOVA on the difference between the predicted 

and observed general skill learning scores. 

Effects P(incl) P(incl|data) BFexclusion 

Block 0.400 0.987 0.013 

Age group 0.400 0.186 4.376 

Block × Age group 0.200 6.190e-4 296.538 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

Table S5.18. Bayesian model comparisons for the difference between the predicted and observed 

general skill learning scores. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  0.010  0.041  1.000    

Block  0.200  0.803  16.347  0.013  0.975  

Block + Age group  0.200  0.184  0.899  0.055  14.114  

Age group  0.200  0.002  0.009  4.332  7.148  

Block + Age group + Block × Age group  0.200  6.190e-4  0.002  16.272  66.534  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor.  
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7. Testing possible confounds influencing the consolidation of statistical and general 

skill knowledge 

7.1. Block-level analysis on the consolidation of statistical knowledge 

To test the possible confounding effect of averaging over the last five blocks of the 

Learning Phase and the first five blocks of the Testing Phase (Pan & Rickard, 2015), we 

contrasted performance in the last block of the Learning Phase (Block 20) and the first 

block is the Testing Phase (Block 21). We ran a mixed-design ANOVA on statistical 

learning scores with BLOCK (Block 20 vs Block 21) as a within-subject factor and AGE 

GROUP as a between-subjects factor. The analysis revealed that, on the group level, some 

degree of forgetting cannot be ruled out as the main effect of BLOCK was at the trend-

level (F(1, 246) = 3.54, p = 0.06, p
2 = 0.01), learning scores were lower in Block 21 (M 

= 9.28 ms) than in Block 20 (M = 15.38 ms). Importantly, no significant age-related 

differences were detected in the retention of statistical knowledge (non-significant 

BLOCK x AGE GROUP interaction: F(8, 246) = 1.67, p = 0.11, p
2 = 0.05).  

We also ran a Bayesian mixed-design ANOVA identical to the frequentist one. 

The ANOVA suggested that regarding the main effect of BLOCK, the data is not 

conclusive, the Bayes Factor was around 1, not supporting either the null or the alternative 

hypothesis (Table S5.19 and S5.20). Moreover, the lack of age-related differences in 

retention was supported by the Bayesian ANOVA (Table S5.19 and S5.20), corroborating 

the results of the frequentist ANOVA. 

As noted in the main text, the analysis of block-wise data in the ASRT task should 

be interpreted carefully due to the relatively low number of trials. Statistical learning 

scores are calculated as difference scores between the high- and low-probability trials 

after excluding the first five random practice trials at the beginning of the block, erroneous 

responses as well as trills and repetitions from the 85 trials that are presented in a block. 

Hence, aggregated (mostly epoch-level) data has been used to characterize learning in the 

ASRT task since its inception because it enables to track the trajectory of learning while 

simultaneously decreasing the effect of noise in the learning scores to an acceptable level 

(J. H. Howard, Jr. & Howard, 1997; Song et al., 2007a, 2007b). 
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Table S5.19. Analysis of effects of the Bayesian ANOVA on statistical knowledge in the last 

block of the Learning Phase and in the first block of the Testing Phase. 

Effects P(incl) P(incl|data) BFexclusion 

Block 0.400 0.419 1.380 

Age group 0.400 0.020 50.135 

Block × Age group 0.200 0.002 3.762 

Notes. The Effects column denotes the main effects and interaction. The P(incl) column indicates 

the prior inclusion probability and the P(incl|data) denotes the posterior inclusion probability. The 

BFexclusion column shows the exclusion Bayes Factors. BFexclusion values below 1 support the 

inclusion and values above 1 the exclusion of the given factor. 

Table S5.20. Bayesian model comparisons for statistical knowledge in the last block of the 

Learning Phase and in the first block of the Testing Phase. 

Models  P(M) P(M|data) BFM BF01 error % 

Null model (incl. subject)   0.200  0.567  5.245  1.000    

Block  0.200  0.411  2.790  1.381  0.996  

Age group  0.200  0.011  0.045  50.798  0.269  

Block + Age group  0.200  0.008  0.034  67.997  1.591  

Block + Age group + Block × Age group  0.200  0.002  0.009  255.803  1.778  

Notes. All models include subject. The Models column denotes the predictors included in each 

model, the P(M) column the prior model probability, the P(M|data) column the posterior model 

probability, the BFM column the posterior model odds, and the BF01 column the Bayes factors for 

each model compared to the null model. BF01 values between 1 and 3 indicate anecdotal evidence, 

values between 3 and 10 indicate substantial evidence and values larger than 10 indicate strong 

evidence for H0. Values between 1 and 1/3 suggest anecdotal evidence, values between 1/3 and 

1/10 indicate substantial evidence, and values below 1/10 indicate strong evidence for H1. Values 

around 1 do not support either hypothesis. The error is an estimate of the numerical error in the 

computation of the Bayes factor. 

7.2. Block-level analysis on the consolidation of general skill knowledge 

To test whether practice-dependent changes in the Testing Phase influenced the offline 

learning of general skill knowledge over the 24-hour offline delay, we compared 

performance in the last block of the Learning Phase (Block 20) and the first block of the 

Testing Phase (Block 21). In detail, we contrasted general skill knowledge over the delay 

period with a mixed-design ANOVA on median RTs (i.e., RTs irrespective of the 

probabilities of events) with BLOCK (Block 20 vs Block 21) as a within-subject factor 

and AGE GROUP as a between-subject factor. The analysis showed that on the group 

level, median RTs significantly decreased over the 24-hour delay (main effect of 

BLOCK: F(1, 246) = 11.00, p = 0.001, p
2 = 0.04), participants responded faster in the 

first block of the Testing Phase compared to the last block of the Learning Phase. The 
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amount of speed-up was comparable across the age groups (as suggested by the non-

significant BLOCK x AGE GROUP interaction: F(8, 246) = 1.05, p = 0.40, p
2 = 0.03). 

This suggests that practice-dependent changes did not influence offline learning of 

general skill knowledge over the offline delay. 

To further investigate this effect, we conducted an additional ANOVA with 

PHASE (Learning Phase vs. Testing Phase) and BLOCK (1-5) as within-subject factors 

and AGE GROUP as a between-subjects factor. This way, we could compare how 

performance changed across Block 1-5 (first five blocks of the Learning Phase) and Block 

21-25 (first five blocks of the Testing Phase). A similar increase in RTs in Block 1-5 and 

Block 21-25 would suggest that the offline learning showed over the offline delay could 

be explained by the additional practice in the Testing Phase rather than consolidation. The 

results are shown in Table S5.21. 

Table S5.21. The results of the mixed-design ANOVA on general skill knowledge in the first five 

blocks of the Learning Phase and in the first five blocks of the Testing Phase. 

Effects F p p
2 

Age group 28.51 < 0.001 0.48 

Phase 554.79 < 0.001 0.69 

Block 82.31 < 0.001 0.25 

Age group × Phase 12.60 < 0.001 0.69 

Age group × Block 2.48 < 0.001 0.08 

Phase × Block 58.06 < 0.001 0.19 

Age group × Phase × 

Block 
2.26 0.001 0.07 

 

The significant PHASE x BLOCK interaction suggests that the change in RTs 

across the blocks differed in the Learning and Testing Phases. Post-hoc analyses suggest 

that in the Learning Phase, there was a steeper increase in RTs (MBlock 1 = 625.56 ms; 

MBlock 5 = 544.44 ms, difference: 81.12 ms) than in the Testing Phase (MBlock 21 = 466.94 

ms, MBlock 25 = 454.49 ms, difference: 12.45 ms). In the Learning Phase, all blocks differed 

from each other (all ps < 0.003) expect for Block 4 vs. 5 (p = 0.27). In the Testing Phase, 

RTs were slower in Block 21 compared to the remaining blocks (all ps < 0.001), but the 

remaining blocks did not differ from each other (all ps > 0.34). The steeper increase in 

RTs at the beginning of the Learning Phase than at the beginning of the Testing Phase 
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suggest that the observed offline learning of general skill knowledge over the 24-hour 

offline delay was not due to further practice-dependent changes in the Testing Phase. 

The significant AGE GROUP x PHASE x BLOCK interaction suggests that the 

trajectory of performance change across the blocks in the Learning and Testing Phases 

differed in the age groups. To disentangle this effect, we ran two follow-up ANOVAs 

with BLOCK as a within-subject factor and AGE GROUP as a between-subject factor 

separately for the two phases. In the Learning Phase, the AGE GROUP x BLOCK 

interaction was significant: there was a steeper increase in RTs in the 7-8, 45-60 and 61-

76-year-old groups compared to the other groups. In the Testing Phase, however, AGE 

GROUP x BLOCK interaction did not reach significance, suggesting that the trajectory 

of performance change was similar across the age groups. 

 

7.3. The consolidation of general skill knowledge in terms of accuracy scores 

To test whether offline learning in terms of reaction times could be influenced by 

decreased accuracy over the offline period, we ran a mixed-design ANOVA on mean 

accuracy scores (i.e., accuracy irrespective of the probabilities of events) with EPOCH 

(Epoch 4 vs Epoch 5) as a within-subject factor and AGE GROUP as a between-subject 

factor. The ANOVA revealed that mean accuracy scores significantly increased over the 

24-hour delay (main effect of EPOCH: F(1, 246) = 13.55, p < 0.001, p
2 = 0.05). The 

amount of improvement was not uniform across the age groups (EPOCH x AGE GROUP 

interaction: F(8, 246) = 4.12, p < .001, p
2 = 0.12). Significant offline learning was only 

detectable in the 7-8-year-old group (MEpoch 4 = 91.1%, MEpoch 5 = 94.8%, p < .001) and in 

the 11-13-year-old group (MEpoch 4 = 95.7%, MEpoch 5 = 96.8%, p = .045). Mean accuracy 

scores were comparable over the delay in the other age groups (ps > .058). These results 

suggest that, in terms of accuracy scores, none of the age groups showed forgetting in 

general skills, therefore, offline learning in terms of reaction times cannot be explained 

by a decreased accuracy over the offline period.   
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