Purpose of the course:

Learning outcome, competences
knowledge:
- broad theoretical knowledge in Philosophy of Science

attitude:
- comprehensive theoretical interest

skills:
- comprehensive methodological knowledge
- ability to test theoretical questions and for relevant hypotheses

Content of the course

Topics of the course
- I. Scientific inquiry: invention and test (Introductory examples for hypotheses, explanations, tests etc.)
- II. The test of a hypothesis (Experimental and crucial tests. Auxiliary and ad hoc hypotheses.)
- V. Postpositivism (The cumulative view of XIX. century. Kuhn and scientific revolutions. Paradigms and normal science. Incommensurability. Lakatos and the methodology of scientific research programs. Feyerabend and the problem of development. Evolutionary models of knowledge.)
- VI. Introduction to sociology of science (Ethnomетодology in the lab. The Strong Program in the Sociology of Knowledge. The Empirical Program of Relativism. The social constructivism.)
- VII. Summary and outlook

Learning activities, learning methods:
Lectures and interactive discussions

Evaluation of outcomes

Learning requirements, mode of evaluation, criteria of evaluation:
requirements
- Reliable basic knowledge in the domain of Philosophy of Science

mode of evaluation: oral exam
criteria of evaluation:

-
-

Reading list

Compulsory reading list

- F. Bacon: Novum Organum – extracts
- C. G. Hempel: The Theoretician’s Dilemma – extract
- R. Carnap: Testability and Meaning. Philosophy of Science 3 (1936) and 4 (1937) – short extracts
- K. R. Popper: The Logic of Scientific Discovery. – extract
- T. S. Kuhn: The Structure of Scientific Revolutions – extract
- K. Mannheim: Ideology and Utopia – extract
- D. Bloor: Knowledge and Social Imagery – extracts
- A. Sokal and J. Bricmont: Fashionable Nonsense – extract
-

Recommended reading list

-
-